English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/14846
Title: Generic absorbing transition in coevolution dynamics
Authors: Vázquez, Federico; Eguíluz, Víctor M.; San Miguel, Maxi
Keywords: Approximation theory
Social sciences
[PACS] Structures and organization in complex systems
[PACS] Fluctuation phenomena, random processes, noise, and Brownian motion
[PACS] Self-organized systems
[PACS] Networks and genealogical trees
Issue Date: 14-Mar-2008
Publisher: American Physical Society
Citation: Physical Review Letters 100(10): 108702 (2008)
Abstract: We study a coevolution voter model on a complex network. A mean-field approximation reveals an absorbing transition from an active to a frozen phase at a critical value p_c=(μ-2)/(μ-1) that only depends on the average degree µ of the network. In finite-size systems, the active and frozen phases correspond to a connected and a fragmented network, respectively. The transition can be seen as the sudden change in the trajectory of an equivalent random walk at the critical point, resulting in an approach to the final frozen state whose time scale diverges as τ~|p_c-p|^-1 near p_c.
Description: 4 pages, 4 figures.-- PACS nrs.: 89.75.Fb; 05.40.-a; 05.65.+b; 89.75.Hc.-- ArXiv pre-print available at: http://arxiv.org/abs/0710.4910
Publisher version (URL): http://dx.doi.org/10.1103/PhysRevLett.100.108702
URI: http://hdl.handle.net/10261/14846
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.100.108702
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
PhysRevLett_100_108702.pdf599,73 kBAdobe PDFView/Open
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.