Please use this identifier to cite or link to this item:
Título : Generic absorbing transition in coevolution dynamics
Autor : Vázquez, Federico, Eguíluz, Víctor M., San Miguel, Maxi
Palabras clave : Approximation theory
Social sciences
[PACS] Structures and organization in complex systems
[PACS] Fluctuation phenomena, random processes, noise, and Brownian motion
[PACS] Self-organized systems
[PACS] Networks and genealogical trees
Fecha de publicación : 14-Mar-2008
Editor: American Physical Society
Resumen: We study a coevolution voter model on a complex network. A mean-field approximation reveals an absorbing transition from an active to a frozen phase at a critical value p_c=(μ-2)/(μ-1) that only depends on the average degree µ of the network. In finite-size systems, the active and frozen phases correspond to a connected and a fragmented network, respectively. The transition can be seen as the sudden change in the trajectory of an equivalent random walk at the critical point, resulting in an approach to the final frozen state whose time scale diverges as τ~|p_c-p|^-1 near p_c.
Descripción : 4 pages, 4 figures.-- PACS nrs.: 89.75.Fb; 05.40.-a; 05.65.+b; 89.75.Hc.-- ArXiv pre-print available at:
Versión del editor:
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.100.108702
Citación : Physical Review Letters 100(10): 108702 (2008)
Appears in Collections:(IFISC) Artículos

Files in This Item:
File Description SizeFormat 
PhysRevLett_100_108702.pdf599,73 kBAdobe PDFView/Open
Show full item record

Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.