English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/148376
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Large halloween asteroid at lunar distance

AuthorsMüller, T.G.; Marciniak, A.; Butkiewicz-Bak, M.; Duffard, René D. ; Oszkiewicz, D; Kaufl, HU; Szakats, R; Santana-Ros, T; Kiss, C; Santos Sanz, Pablo
KeywordsMinor planets asteroids: individual: 2015 TB145
Radiation mechanisms: thermal
Techniques: photometric
Infrared: planetary systems
Issue Date2017
PublisherEDP Sciences
CitationAstronomy and Astrophysics 598: A63 (2017)
AbstractThe near-Earth asteroid (NEA) 2015 TB had a very close encounter with Earth at 1.3 lunar distances on October 31, 2015. We obtained 3-band mid-infrared observations of this asteroid with the ESO VLT-VISIR instrument covering approximately four hours in total. We also monitored the visual lightcurve during the close-encounter phase. The NEA has a (most likely) rotation period of 2.939 ± 0.005 h and the visual lightcurve shows a peak-to-peak amplitude of approximately 0.12 ± 0.02 mag. A second rotation period of 4.779 ± 0.012 h, with an amplitude of the Fourier fit of 0.10 ± 0.02 mag, also seems compatible with the available lightcurve measurements. We estimate a V-R colour of 0.56 ± 0.05 mag from different entries in the MPC database. A reliable determination of the object's absolute magnitude was not possible. Applying different phase relations to the available R-/V-band observations produced H = 18.6 mag (standard H-G calculations) or H = 19.2 mag and H = 19.8 mag (via the H-G procedure for sparse and low-quality data), with large uncertainties of approximately 1 mag. We performed a detailed thermophysical model analysis by using spherical and partially also ellipsoidal shape models. The thermal properties are best explained by an equator-on (± 30°) viewing geometry during our measurements with a thermal inertia in the range 250-700 J m s K (retrograde rotation) or above 500 J m s K (prograde rotation). We find that the NEA has a minimum size of approximately 625 m, a maximum size of just below 700 m, and a slightly elongated shape with a/b 1.1. The best match to all thermal measurements is found for: (i) thermal inertia Γ = 900 J m s K; D = 644 m, p = 5.5% (prograde rotation with 2.939 h); regolith grain sizes of 50-100 mm; (ii) thermal inertia Γ = 400 J m s K; D = 667 m, p = 5.1% (retrograde rotation with 2.939 h); regolith grain sizes of 10-20 mm. A near-Earth asteroid model (NEATM) confirms an object size well above 600 m (best NEATM solution at 690 m, beaming parameter η = 1.95), significantly larger than early estimates based on radar measurements. In general, a high-quality physical and thermal characterisation of a close-encounter object from two-week apparition data is not easily possible. We give recommendations for improved observing strategies for similar events in the future. © ESO, 2017.
Publisher version (URL)http://dx.doi.org/10.1051/0004-6361/201629584
Identifiersdoi: 10.1051/0004-6361/201629584
issn: 1432-0746
Appears in Collections:(IAA) Artículos
Files in This Item:
File Description SizeFormat 
IAA_2017aa29584-16.pdf683,08 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.