Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/148131
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorPuerto, D.-
dc.contributor.authorGarcía-Lechuga, Mario-
dc.contributor.authorHernández Rueda, Javier-
dc.contributor.authorGarcía-Leis, Adianez-
dc.contributor.authorSánchez-Cortés, Santiago-
dc.contributor.authorSolís Céspedes, Javier-
dc.contributor.authorSiegel, Jan-
dc.date.accessioned2017-04-07T11:12:05Z-
dc.date.available2017-04-07T11:12:05Z-
dc.date.issued2016-05-20-
dc.identifierdoi: 10.1088/0957-4484/27/26/265602-
dc.identifierissn: 1361-6528-
dc.identifier.citationNanotechnology 27: 265602 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/148131-
dc.description8 págs.; 5 figs.; 1 tab.-
dc.description.abstractSelf-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N ) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.-
dc.description.sponsorshipThis work has been supported by the LiNaBioFluid project of the H2020 program of the European Commission (FETOPEN- 665337) as well as by the Spanish TEC2014-52642-C2- 1-R. MG-L and JH-R acknowledge the grants respectively awarded by the Spanish Ministry of Education and the Spanish Ministry of Economy and Competiveness.-
dc.publisherInstitute of Physics Publishing-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/665337-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2014-52642-C2-1-R-
dc.relation.isversionofPostprint-
dc.rightsopenAccessen_EN
dc.subjectSubwavelength structures-
dc.subjectLaser materials processing-
dc.subjectPhase change materials-
dc.subjectLaser-induced periodic surface structures-
dc.titleFemtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon-
dc.typeartículo-
dc.identifier.doi10.1088/0957-4484/27/26/265602-
dc.relation.publisherversionhttp://doi.org/10.1088/0957-4484/27/26/265602-
dc.date.updated2017-04-07T11:12:07Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderEuropean Commission-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
local.message.claim2022-09-08T15:28:51.627+0200|||rp14601|||submit_approve|||dc_contributor_author|||None*
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (CFMAC-IEM) Artículos
(CFMAC-IO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
D_Puerto_a-c_Nanograting_Nanotechnology_2016.pdf9,11 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

43
checked on 23-abr-2024

WEB OF SCIENCETM
Citations

42
checked on 24-feb-2024

Page view(s)

259
checked on 23-abr-2024

Download(s)

458
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.