English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/148125
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)

A primordial, mathematical, logical and computable, demonstration (proof) of the family of conjectures known as Goldbach´s

AutorNoheda Marín, Pedro ; Tabares Cantero, Nuria
Fecha de publicación2017
ResumenIn this document, by means of a novel system model and first order topological, algebraic and geometrical free-­‐context formal language (NT-­‐FS&L), first, we describe a new signature for a set of the natural numbers that is rooted in an intensional inductive de-­‐embedding process of both, the tensorial identities of the known as “natural numbers”, and the abstract framework of theirs locus-­‐positional based symbolic representations. Additionally, we describe that NT-­‐FS&L is able to: i.-­‐ Embed the De Morgan´s Laws and the FOL-­‐Peano´s Arithmetic Axiomatic. ii.-­‐ Provide new points of view and perspectives about the succession, precede and addition operations and of their abstract, topological, algebraic, analytic geometrical, computational and cognitive, formal representations. Second, by means of the inductive apparatus of NT-­‐FS&L, we proof that the family of conjectures known as Glodbach’s holds entailment and truth when the reasoning starts from the consistent and finitary axiomatic system herein described
Descripciónlicencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Aparece en las colecciones: (IQOG) Informes y documentos de trabajo
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CG- Noheda-Tabares (NT) (Goldbach )pdf DEF-EMAIL.pdf3,64 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.