English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/147595
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Critical assessment of the nature and properties of Fe(II) triazole-based spin-crossover nanoparticles

AuthorsBartual-Murgui, Carlos; Natividad, Eva; Roubeau, Olivier
Issue Date2015
PublisherRoyal Society of Chemistry (Great Britain)
CitationJournal of Materials Chemistry C 3(30): 7916-7924 (2015)
AbstractThe shape and size of nanoparticles of the spin crossover compound [Fe(Htrz)2trz]BF4 obtained by the reverse-micelle method and using as co-surfactants dioctylsulfosuccinate and behenic acid are described through systematic transmission electron microscopy observations. A rod shape is systematically derived, and the rod sizes, in particular, their width, are controllable through the surfactant concentration, although a poor reproducibility is observed and ascribed to uncontrolled parameters in the micelle elaboration and microemulsion formation and ageing. The influence of synthetic parameters and nanoparticle processing on the spin crossover properties of nanoparticles is also reported, as characterized by both calorimetry and magnetic measurements. These unravel original size and environment effects. On the one hand, the hysteresis width of the thermal spin crossover exhibited by raw nanoparticles increases linearly with the rod width, until it reaches a value of 40 K, close to that of the bulk material. A similarly good correlation is found with the nanoparticle volume. On the other hand, the removal of the surfactant from the raw nanoparticles is found to systematically reduce the hysteresis width in a drastic manner, by up to 16 K.
Identifiersdoi: 10.1039/c5tc01174d
issn: 2050-7526
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.