English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/14581
Title: Localized structures in coupled Ginzburg-Landau equations
Authors: Montagne, Raúl; Hernández-García, Emilio
Keywords: Complex Ginzburg–Landau equations
Localized structures
Issue Date: 28-Aug-2000
Publisher: Elsevier
Citation: Physics Letters A 273(4): 239-244 (2000)
Abstract: Coupled complex Ginzburg–Landau equations describe generic features of the dynamics of coupled fields when they are close to a Hopf bifurcation leading to nonlinear oscillations. We study numerically this set of equations and find, within a particular range of parameters, the presence of uniformly propagating localized objects behaving as coherent structures. Some of these localized objects are interpreted in terms of an analytical ansatz.
Description: 6 pages, 3 figures.-- ArXiv pre-print available at: http://arxiv.org/abs/nlin/0002053
Publisher version (URL): http://dx.doi.org/10.1016/S0375-9601(00)00472-2
URI: http://hdl.handle.net/10261/14581
DOI: 10.1016/S0375-9601(00)00472-2
ISSN: 0375-9601
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
0002053v1.pdf216,12 kBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.