English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/143595
Compartir / Impacto:
Título : Low-Power CMOS Vision Sensor for Gaussian Pyramid Extraction
Autor : Suárez, Manuel; Brea, V.M.; Fernández-Berni, J. ; Carmona-Galán, R. ; Cabello, D.; Rodríguez-Vázquez, Ángel
Palabras clave : CMOS Vision Sensors
Gaussian Filters
Image Pyramids
Switched-Capacitor Circuits
Per-Pixel 20 Processing
Fecha de publicación : 2017
Editor: Institute of Electrical and Electronics Engineers
Citación : IEEE Journal of Solid State Circuits, 52(2): 483-495 (2017)
Resumen: This paper introduces a CMOS vision sensor chip in a standard 0.18 μm CMOS technology for Gaussian pyramid extraction. The Gaussian pyramid provides computer vision algorithms with scale invariance, which permits having the same response regardless of the distance of the scene to the camera. The chip comprises 176×120 photosensors arranged into 88×60 processing elements (PEs). The Gaussian pyramid is generated with a double-Euler switched capacitor (SC) network. Every PE comprises four photodiodes, one 8 b single-slope analog-to-digital converter, one correlated double sampling circuit, and four state capacitors with their corresponding switches to implement the double-Euler SC network. Every PE occupies 44×44 μm2 . Measurements from the chip are presented to assess the accuracy of the generated Gaussian pyramid for visual tracking applications. Error levels are below 2% full-scale output, thus making the chip feasible for these applications. Also, energy cost is 26.5 nJ/px at 2.64 Mpx/s, thus outperforming conventional solutions of imager plus microprocessor unit.
Versión del editor: https://doi.org/10.1109/JSSC.2016.2610580
URI : http://hdl.handle.net/10261/143595
DOI: 10.1109/JSSC.2016.2610580
Aparece en las colecciones: (IMS-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
version_post_print.pdf2,81 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.