Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/1435
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Overview of BioCreAtIvE: critical assessment of information extraction for biology

AuthorsHirschman, Lynette; Yeh, Alexander; Blaschke, Christian; Valencia, Alfonso
Issue Date24-May-2005
PublisherBioMed Central
CitationBMC Bioinformatics 2005, 6(Suppl 1):S1
Abstract[Background]The goal of the first BioCreAtIvE challenge (Critical Assessment of Information Extraction in Biology) was to provide a set of common evaluation tasks to assess the state of the art for text mining applied to biological problems. The results were presented in a workshop held in Granada, Spain March 28–31, 2004. The articles collected in this BMC Bioinformatics supplement entitled "A critical assessment of text mining methods in molecular biology" describe the BioCreAtIvE tasks, systems, results and their independent evaluation.
[Results] BioCreAtIvE focused on two tasks. The first dealt with extraction of gene or protein names from text, and their mapping into standardized gene identifiers for three model organism databases (fly, mouse, yeast). The second task addressed issues of functional annotation, requiring systems to identify specific text passages that supported Gene Ontology annotations for specific proteins, given full text articles.
[Conclusion] The first BioCreAtIvE assessment achieved a high level of international participation (27 groups from 10 countries). The assessment provided state-of-the-art performance results for a basic task (gene name finding and normalization), where the best systems achieved a balanced 80% precision / recall or better, which potentially makes them suitable for real applications in biology. The results for the advanced task (functional annotation from free text) were significantly lower, demonstrating the current limitations of text-mining approaches where knowledge extrapolation and interpretation are required. In addition, an important contribution of BioCreAtIvE has been the creation and release of training and test data sets for both tasks. There are 22 articles in this special issue, including six that provide analyses of results or data quality for the data sets, including a novel inter-annotator consistency assessment for the test set used in task 2.
DescriptionFrom A critical assessment of text mining methods in molecular biology
URIhttp://hdl.handle.net/10261/1435
DOI10.1186/1471-2105-6-S1-S1
ISSN1471-2105
Appears in Collections:(CNB) Artículos




Files in This Item:
File Description SizeFormat
1471-2105-6-S1-S1.pdf302,69 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

PubMed Central
Citations

159
checked on May 27, 2022

SCOPUSTM   
Citations

365
checked on May 19, 2022

WEB OF SCIENCETM
Citations

283
checked on May 24, 2022

Page view(s)

397
checked on May 28, 2022

Download(s)

211
checked on May 28, 2022

Google ScholarTM

Check

Altmetric

Dimensions


Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.