Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/143200
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A global scale scenario for prebiotic chemistry: silica-based self- assembled mineral structures and formamide

AutorSaladino, Raffaele; Botta, Giorgia; Mattia Bizzari, Bruno; Di Mauro, Ernesto; García Ruiz, Juan Manuel CSIC ORCID
Fecha de publicación26-abr-2016
EditorAmerican Chemical Society
CitaciónBiochemistry - Columbus 55(19): 2806-2811 (2016)
ResumenThe pathway from simple abiotically made organic compounds to the molecular bricks of life, as we know it, is unknown. The most efficient geological abiotic route to organic compounds results from the aqueous dissolution of olivine, a reaction known as serpentinization (Sleep, N.H., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 12818–12822). In addition to molecular hydrogen and a reducing environment, serpentinization reactions lead to high-pH alkaline brines that can become easily enriched in silica. Under these chemical conditions, the formation of self-assembled nanocrystalline mineral composites, namely silica/carbonate biomorphs and metal silicate hydrate (MSH) tubular membranes (silica gardens), is unavoidable (Kellermeier, M., et al. In Methods in Enzymology, Research Methods in Biomineralization Science (De Yoreo, J., Ed.) Vol. 532, pp 225–256, Academic Press, Burlington, MA). The osmotically driven membranous structures have remarkable catalytic properties that could be operating in the reducing organic-rich chemical pot in which they form. Among one-carbon compounds, formamide (NH2CHO) has been shown to trigger the formation of complex prebiotic molecules under mineral-driven catalytic conditions (Saladino, R., et al. (2001) Biorganic & Medicinal Chemistry, 9, 1249–1253), proton irradiation (Saladino, R., et al. (2015) Proc. Natl. Acad. Sci. USA, 112, 2746–2755), and laser-induced dielectric breakdown (Ferus, M., et al. (2015) Proc Natl Acad Sci USA, 112, 657–662). Here, we show that MSH membranes are catalysts for the condensation of NH2CHO, yielding prebiotically relevant compounds, including carboxylic acids, amino acids, and nucleobases. Membranes formed by the reaction of alkaline (pH 12) sodium silicate solutions with MgSO4 and Fe2(SO4)3·9H2O show the highest efficiency, while reactions with CuCl2·2H2O, ZnCl2, FeCl2·4H2O, and MnCl2·4H2O showed lower reactivities. The collections of compounds forming inside and outside the tubular membrane are clearly specific, demonstrating that the mineral self-assembled membranes at the same time create space compartmentalization and selective catalysis of the synthesis of relevant compounds. Rather than requiring odd local conditions, the prebiotic organic chemistry scenario for the origin of life appears to be common at a universal scale and, most probably, earlier than ever thought for our planet.
Versión del editorhttp://dx.doi.org/10.1021/acs.biochem.6b00255
URIhttp://hdl.handle.net/10261/143200
DOI10.1021/acs.biochem.6b00255
ISSN0006-2960
Aparece en las colecciones: (IACT) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Biochemistry .pdfArtículo principal2,07 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

21
checked on 18-mar-2024

SCOPUSTM   
Citations

58
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

56
checked on 29-feb-2024

Page view(s)

256
checked on 19-abr-2024

Download(s)

292
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.