English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/1421
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Integrated analysis of gene expression by association rules discovery

AuthorsCarmona-Sáez, Pedro; Chagoyen, Mónica; Rodríguez, Andrés; Trelles, Oswaldo; Carazo, José M.; Pascual-Montano, Alberto
Issue Date7-Feb-2006
PublisherBioMed Central
CitationBMC Bioinformatics 2006, 7:54
Abstract[Background] Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process.
[Results] In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work.
[Conclusion] The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package.
DescriptionThis article is available from: http://www.biomedcentral.com/1471-2105/7/54
URIhttp://hdl.handle.net/10261/1421
DOI10.1186/1471-2105-7-54
ISSN1471-2105
Appears in Collections:(CNB) Artículos
Files in This Item:
File Description SizeFormat 
1471-2105-7-54.pdf1,51 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.