Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/140387
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorMiller, A. Z.es_ES
dc.contributor.authorKnicker, Heikees_ES
dc.contributor.authorRosa Arranz, José M. de laes_ES
dc.contributor.authorJiménez Morillo, N. T.es_ES
dc.contributor.authorPereira, M.F.C.es_ES
dc.contributor.authorGonzález-Pérez, José Antonioes_ES
dc.contributor.authorSáiz-Jiménez, Cesáreo-
dc.date.accessioned2016-11-17T13:52:43Z-
dc.date.available2016-11-17T13:52:43Z-
dc.date.issued2016-11-
dc.identifier.citationAdvances in chromatography and related techniques: Book of Abstracts 152-152 (2016)es_ES
dc.identifier.isbn978-84-617-6155-5-
dc.identifier.urihttp://hdl.handle.net/10261/140387-
dc.descriptionPóster presentado en el la XVI Reunión Científica de la Sociedad Española de Cromatografía y Técnicas Afines (SECyTA2016) P‐ENV‐5es_ES
dc.descriptionEds: González-Pérez, José Antonio.-- Almendros Martín, Gonzalo.-- González-Vila, Francisco Javier.-- Rosa Arranz, José M. de la-
dc.description.abstractSpeleothems, or secondary mineral deposits found in caves, are formed due to dissolution of primary minerals from the host rock and subsequent precipitation. Their formation is greatly prompted by water‐rock interactions and climate conditions, which dictate how much water drip into the cave system [1]. In humid climates or during heavy precipitation a relatively rapid speleothem growth may occur, whereas in arid climates or during drought the growth is moderated or ceased. Hence, the composition, abundance and growth pattern of speleothems may be indicative of climate changes, as reported by several authors [1‐2]. This study comprises a multidisciplinary approach based in the combination of chromatography (analytical pyrolysis and pyrolysis compound‐specific isotope analysis) and stable isotope analysis for characterizing organic compounds entrapped in speleothems from volcanic caves. Samples collected in lava tubes were selected for this study: (i) coralloid speleothems rrom Easter Island (Chile), and (ii) moonmilk deposits from La Palma (Canary Islands, Spain). The aim was to recognize environmental changes during speleothem formation. The coralloid speleothems from Easter Island consisted of three major layers with different mineralogical composition and a significant contribution of organic carbon. Analytical pyrolysis (Py‐GC/MS) revealed contributions from higher plants and microorganisms to the organic matter entrapped in the coralloid speleothems. Biogeochemical analyses based on isotopic signatures and pyrolysis compound‐specific isotope analysis (Py‐CSIA) revealed that the genesis of the three colored layers was related to two different stages of speleothem formation caused by environmental changes on Easter Island. Variations in δ13C values pointed to wetter conditions during the formation of the innermost layer and a water shortage during the latest stage of speleothem formation. The trend observed for δ15N values suggested an increase in theaverage temperature over time, which is consistent with the so‐called climate warming during the Holocene [3]. The chromatograms of the moonmilk deposits from Canary Islands evidenced the presence of organic compounds in their composition, in particular fatty acids, polysaccharides, phytosterols and oleanane‐type triterpenes. Most of them have been previously found in sedimentary records. Oleananes and specific steranes are believed to derive from the early diagenesis of gymnosperms [4]. Our data suggest that the organic compounds associated with moonmilk deposits are partially driven by the topsoil and vegetation overlying the cave system. Hence, Py‐GC/MS and Py‐CSIA could be used as a valid proxy for paleoenvironmental research.es_ES
dc.description.abstract[1] J.M. Calaforra, P. Forti, A. Fernándes‐Cortés, Environ. Geol. 53 (2008) 1099–1105. [2] A. Moreno, H.M. Stoll, M. Jiménez‐Sánchez, I. Cacho, B. Valero‐Garcés, E. Ito, R.L. Edwards, Global Planet. Change 71 (2010) 218–231. [3] A.Z. Miller, J.M. de la Rosa, N.T. Jiménez‐Morillo, M.F.C. Pereira, J.A. González‐Pérez, J.M. Calaforra, C. Saiz‐Jimenez, J. Chromatogr. A (2016) in press. [4] J.O. Grimalt, I. Yruela, C. Saiz‐Jiménez, J. Toja, J.W. DeLeeuw, J. Albaiges, Geochim. Cosmochim. Ac. 9 (1991) 2555–2577.es_ES
dc.language.isoenges_ES
dc.publisherSociedad Española de Cromatografía y Técnicas Afineses_ES
dc.rightsclosedAccesses_ES
dc.titleAssessing paleoclimatic changes archived in speleothems from volcanic Caves by pyrolysis gas chromatography‐based analyseses_ES
dc.typepóster de congresoes_ES
dc.description.peerreviewedNoes_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.type.coarhttp://purl.org/coar/resource_type/c_6670es_ES
item.openairetypepóster de congreso-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (IDAEA) Libros y partes de libros
(IRNAS) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

242
checked on 19-abr-2024

Download(s)

46
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.