English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/139226
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Assessment of table olive fermentation by functional data analysis

AuthorsRuiz-Bellido, M. A.; Romero-Gil, V.; García García, Pedro ; Rodríguez-Gómez, Francisco J. ; Arroyo López, Francisco Noé ; Garrido Fernández, A.
KeywordsAloreña de Málaga
Functional regression
Functional permutation tests
R software
Issue Date5-Dec-2016
CitationInternational Journal of Food Microbiology 238: 1-6 (2016)
AbstractFor the first time, functional data analysis (FDA) was used to assess the effects of different treatments on Protection Denomination of Origin Aloreña de Málaga table olive fermentations, focusing on the evolution of yeast population. The analysis of fermentation by a conventional approach led to scarce information. However, the transformation of microbial (and also physicochemical) data into smooth curves allowed the application of a new battery of statistical tools for the analysis of fermentations (functional pointwise estimation of the averages and standard deviations, maximum, minimum, first and second derivatives, functional regression, and functional F and t-tests). FDA showed that all the treatments assayed led to similar trends in yeast population while changes in pH and titratable acidity profiles led to several significant differences. Therefore, FDA represents a promising and valuable tool for studying table olive fermentations and for food microbiology in general.
Description41 Páginas; 2 Tablas; 5 Tablas suplementarias; 5 Figuras
Publisher version (URL)http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.031
Appears in Collections:(IG) Artículos
Files in This Item:
File Description SizeFormat 
Postprint_2016_IntJFoodMic_V238_P1.pdfArtículo principal900,65 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.