Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/134813
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Large-scale conversion of helical-ribbon carbon nanofibers to a variety of graphene-related materials

AutorLobato Ortega, Belén CSIC ORCID; Merino, C.; Barranco, Violeta CSIC ORCID ; Álvarez Centeno, Teresa CSIC ORCID
Fecha de publicación10-jun-2016
EditorRoyal Society of Chemistry (UK)
CitaciónRSC Advances 6(62): 57514-57520 (2016)
ResumenHelical-ribbon carbon nanofibers produced on an industrial scale were successfully converted in highly functionalized graphene nanoplatelets by using a slight modification of the Hummers oxidation method. The duration of the oxidative process severely affected the interlayer spacing in the resulting nanoplatelets and, consequently, they showed very different exfoliation behavior. Therefore, it was possible to obtain a variety of graphene-related products through their ultrasonication or thermal treatments such as exfoliation-reduction by flash-pyrolysis in air at temperatures between 400 and 1000 °C or standard activation with CO2 at 800 °C. Detailed comparison of the functionalized carbon nanoplatelets, graphene oxides, reduced graphene oxides and activated carbon nanoplatelets reveals the wide spectrum of their properties with specific surface areas in the range of 4–500 m2 g−1, oxygen content from 38 to 5 wt% and different structural ordering. This study also underlines the impact of the structural, textural and chemical changes experienced by the carbon nanofibers along the various processes on the performance as supercapacitor electrodes. This preliminary study, based on cyclic voltammetry in 2 M H2SO4 aqueous electrolyte, is a summary of the strengths and weaknesses of the different graphene-related materials for this application. The helical-ribbon carbon nanofibers displayed only 10 F g−1, the capacitance of the functionalized graphene nanoplatelets greatly rose to 104 F g−1 with clear contributions from pseudocapacitance. Values around 100–120 F g−1 were found for the graphene oxides and activated graphene nanoplatelets although a marked resistive character is detected. Flash-pyrolysis at 1000 °C leads to lower capacitance (79 F g−1) but much quicker charge propagation. Among all these materials, the lower-cost functionalized graphene nanoplatelets displayed the better behavior for aqueous supercapacitors.
Versión del editorhttp://dx.doi.org/10.1039/C6RA08865A
URIhttp://hdl.handle.net/10261/134813
DOI10.1039/C6RA08865A
E-ISSN2046-2069
Aparece en las colecciones: (INCAR) Artículos
(ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Large-scale conversion_Lobato.pdf628,16 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

WEB OF SCIENCETM
Citations

9
checked on 24-feb-2024

Page view(s)

251
checked on 24-abr-2024

Download(s)

305
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.