English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/130215
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 3 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data

Autor Weindorf, David C.; Chakraborty, S.; Herrero Isern, Juan ; Herrero Isern, Juan ; Castañeda del Álamo, Carmen ; Choudhury, A.
Fecha de publicación mar-2016
EditorJohn Wiley & Sons
Citación Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data. European Journal of Soil Science 67 (2): 173–183 (2016)
ResumenArid soil is common worldwide and has unique properties that often limit agronomic productivity, specifically, salinity expressed as soluble salts and large amounts of calcium carbonate and gypsum. Currently, the most common methods for evaluating these properties in soil are laboratory-based techniques such as titration, gasometry and electrical conductivity. In this research, we used two proximal sensors (portable X-ray fluorescence (PXRF) and visible near-infrared diffuse reflectance spectroscopy (Vis–NIR DRS)) to scan a diverse set (n = 116) of samples from arid soil in Spain. Then, samples were processed by standard laboratory procedures and the two datasets were compared with advanced statistical techniques. The latter included penalized spline regression (PSR), support vector regression (SVR) and random forest (RF) analysis, which were applied to Vis–NIR DRS data, PXRF data and PXRF and Vis–NIR DRS data, respectively. Independent validation (30% of the data) of the calibration equations showed that PSR + RF predicted gypsum with a ratio of performance to interquartile distance (RPIQ) of 5.90 and residual prediction deviation (RPD) of 4.60, electrical conductivity (1:5 soil : water) with RPIQ of 3.14 and RPD of 2.10, Ca content with RPIQ of 2.92 and RPD of 2.07 and calcium carbonate equivalent with RPIQ of 2.13 and RPD of 1.74. The combined PXRF and Vis–NIR DRS approach was superior to those that use data from a single proximal sensor, enabling the prediction of several properties from two simple, rapid, non-destructive scans.
Descripción 11 Pags.- 3 Tabls.- 5 Figs.
Versión del editorhttp://dx.doi.org/10.1111/ejss.12320
URI http://hdl.handle.net/10261/130215
DOI10.1111/ejss.12320
ISSN1351-0754
E-ISSN1365-2389
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Acceso_Restringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.