English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/12861
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Self-localized structures in vertical-cavity surface-emitting lasers with external feedback

AuthorsPaulau, P. V. ; Gomila, Damià ; Ackemann, Thorsten; Loiko, N. A.; Firth, William J.
KeywordsBifurcation
Laser cavity resonators
Laser feedback
Optical solitons
Spatiotemporal phenomena
Surface emitting lasers
[PACS] Optical solitons; nonlinear guided waves
[PACS] Optical propagation, scattering, and losses in fibers; solitons
Issue Date28-Jul-2008
PublisherAmerican Physical Society
CitationPhysical Review E 78(1): 016212 (2008)
AbstractIn this paper, we analyze a model of broad area vertical-cavity surface-emitting lasers subjected to frequency-selective optical feedback. In particular, we analyze the spatio-temporal regimes arising above threshold and the existence and dynamical properties of cavity solitons. We build the bifurcation diagram of stationary self-localized states, finding that branches of cavity solitons emerge from the degenerate Hopf bifurcations marking the homogeneous solutions with maximal and minimal gain. These branches collide in a saddle-node bifurcation, defining a maximum pump current for soliton existence that lies below the threshold of the laser without feedback. The properties of these cavity solitons are in good agreement with those observed in recent experiments.
Description7 pages, 8 figures.-- PACS nrs.: 42.65.Tg; 42.81.Dp.
URIhttp://hdl.handle.net/10261/12861
DOI10.1103/PhysRevE.78.016212
ISSN1063-651X
E-ISSN1095-3787
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
PhysRevE_78_016212.pdf885,8 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.