Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/128151
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández-Cortés, Ángeles_ES
dc.contributor.authorCuezva, Soledades_ES
dc.contributor.authorGarcía-Antón, E.es_ES
dc.contributor.authorÁlvarez-Gallego, Miriames_ES
dc.contributor.authorPla, Concepciónes_ES
dc.contributor.authorBenavente, Davides_ES
dc.contributor.authorCañaveras, Juan Carloses_ES
dc.contributor.authorCalaforra, José Maríaes_ES
dc.contributor.authorSánchez-Moral, Sergioes_ES
dc.date.issued2015-07-08-
dc.identifier.citationEnvironmental earth sciences 74(12): 7715-7730 (2015)es_ES
dc.identifier.issn1866-6280-
dc.identifier.urihttp://hdl.handle.net/10261/128151-
dc.description.abstractA comprehensive environmental monitoring program was conducted in the Ojo Guareña cave system (Spain), one of the longest cave systems in Europe, to assess the magnitude of the spatiotemporal changes in carbon dioxide gas (CO2) in the cave–soil–atmosphere profile. The key climate-driven processes involved in gas exchange, primarily gas diffusion and cave ventilation due to advective forces, were characterized. The spatial distributions of both processes were described through measurements of CO2 and its carbon isotopic signal (δ13C[CO2]) from exterior, soil and cave air samples analyzed by cavity ring-down spectroscopy (CRDS). The trigger mechanisms of air advection (temperature or air density differences or barometric imbalances) were controlled by continuous logging systems. Radon monitoring was also used to characterize the changing airflow that results in a predictable seasonal or daily pattern of CO2 concentrations and its carbon isotopic signal. Large daily oscillations of CO2 levels, ranging from 680 to 1900 ppm day−1 on average, were registered during the daily oscillations of the exterior air temperature around the cave air temperature. These daily variations in CO2 concentration were unobservable once the outside air temperature was continuously below the cave temperature and a prevailing advective-renewal of cave air was established, such that the daily-averaged concentrations of CO2 reached minimum values close to atmospheric background. The daily pulses of CO2 and other tracer gases such as radon (222Rn) were smoothed in the inner cave locations, where fluctuation of both gases was primarily correlated with medium-term changes in air pressure. A pooled analysis of these data provided evidence that atmospheric air that is inhaled into dynamically ventilated caves can then return to the lower troposphere as CO2-rich cave air.es_ES
dc.description.sponsorshipThis research was funded by the Agreement between Fundación Patrimonio Natural (Regional Government of Castilla y León) and CSIC and by the Spanish Ministry of Economy and Competitiveness (MINECO) project CGL2013-43324-R and in collaboration with project CGL2011-25162-BTE.es_ES
dc.description.sponsorshipFunding was also provided by the People Programme (Marie Curie Actions—Intra-European Fellowships, call 2013) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 624204, and the MINECO programme Torres Quevedo (PTQ 13-06296 and PTQ 12-05601).es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/624204es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2013-43324-Res_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectCO2 fluxeses_ES
dc.subjectCO2 storage and evacuationes_ES
dc.subjectKarst terrainses_ES
dc.subjectOjo Guareña karst systemes_ES
dc.subjectSpaines_ES
dc.titleChanges in the storage and sink of carbon dioxide in subsurface atmospheres controlled by climate-driven processes: the case of the Ojo Guareña karst systemes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1007/s12665-015-4710-2-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1007/s12665-015-4710-2es_ES
dc.identifier.e-issn1866-6299-
dc.embargo.terms2016-07-08es_ES
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.languageiso639-1en-
item.grantfulltextopen-
Aparece en las colecciones: (MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Environm Earth Sc 74(12) 7715-7730 (2015) POSTPRINT.pdf605,83 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

20
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

18
checked on 27-feb-2024

Page view(s)

279
checked on 18-abr-2024

Download(s)

304
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons