Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127843
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGeyer, Adelina-
dc.contributor.authorMartí Molist, Joan-
dc.date.accessioned2016-01-20T10:41:10Z-
dc.date.available2016-01-20T10:41:10Z-
dc.date.issued2014-
dc.identifierdoi: 10.3389/feart.2014.00022-
dc.identifiere-issn: 2296-6463-
dc.identifier.citationFrontiers in Earth Sciences 2 (2014)-
dc.identifier.urihttp://hdl.handle.net/10261/127843-
dc.description.abstractThe term collapse caldera refers to those volcanic depressions resulting from the sinking of the chamber roof due to the rapid withdrawal of magma during the course of an eruption. During the last three decades, collapse caldera dynamics has been the focus of attention of numerous, theoretical, numerical, and experimental studies. Nonetheless, even if there is a tendency to go for a general and comprehensive caldera dynamics model, some key aspects remain unclear, controversial or completely unsolved. This is the case of ring fault nucleation points and propagation and dip direction. Since direct information on calderas' deeper structure comes mainly from partially eroded calderas or few witnessed collapses, ring faults layout at depth remains still uncertain. This has generated a strong debate over the detailed internal fault and fracture configuration of a caldera collapse and, in more detail, how ring faults initiate and propagate. We offer here a very short description of the main results obtained by those analog and theoretical/mathematical models applied to the study of collapse caldera formation. We place special attention on those observations related to the nucleation and propagation of the collapse-controlling ring faults. This summary is relevant to understand the current state-of-the-art of this topic and it should be taken under consideration in future works dealing with collapse caldera dynamics.-
dc.description.sponsorshipAdelina Geyer is grateful for her Juan de la Cierva post-doctoral grant (JCI-2010-06092) and her Ramón y Cajal contract (RYC-2012-11024). -
dc.publisherFrontiers Media-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectStress field-
dc.subjectNumerical model-
dc.subjectCaldera collapse-
dc.subjectAnalog model-
dc.subjectRing fault-
dc.titleA short review of our current understanding of the development of ring faults during collapse caldera formation-
dc.typeartículo-
dc.identifier.doi10.3389/feart.2014.00022-
dc.date.updated2016-01-20T10:41:10Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (Geo3Bcn) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Geyer_Frontier_in_Earth_Science_2_22.pdf5,94 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

330
checked on 19-abr-2024

Download(s)

318
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons