English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/127368
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorAgostini, Alejandro-
dc.contributor.authorTorras, Carme-
dc.contributor.authorWörgötter, Florentin-
dc.identifierissn: 0952-1976-
dc.identifier.citationEngineering Applications of Artificial Intelligence 36: 178-194 (2014)-
dc.description.abstractWe propose a cognitive system that combines artificial intelligence techniques for planning and learning to execute tasks involving delayed and variable correlations between the actions executed and their expected effects. The system is applied to the task of controlling the growth of plants, where the evolution of the plant attributes strongly depends on different events taking place in the temporally distant past history of the plant. The main problem to tackle is how to efficiently detect these past events. This is very challenging since the inclusion of time could make the dimensionality of the search space extremely large and the collected training instances may only provide very limited information about the relevant combinations of events. To address this problem we propose a learning method that progressively identifies those events that are more likely to produce a sequence of changes under a plant treatment. Since the number of experiences is very limited compared to the size of the event space, we use a probabilistic estimate that takes into account the lack of experience to prevent biased estimations. Planning operators are generated from most accurately predicted sequences of changes. Planning and learning are integrated in a decision-making framework that operates without task interruptions by allowing a human gardener to instruct the treatments when the knowledge acquired so far is not enough to make a decision.-
dc.description.sponsorshipThis research was supported by the European Community Seventh Framework ProgrammeFP7/2007–2013 – Challenge 2 – Cognitive Systems, Interaction, Robotics – under Grant agreement No 247947 – GARNICS.-
dc.subjectWeakly correlated cause–effects-
dc.subjectGrowth of plants-
dc.subjectProbability estimate-
dc.subjectPlanning operator learning-
dc.subjectDecision-making framework-
dc.titleLearning weakly correlated cause-effects for gardening with a cognitive system-
dc.description.versionPeer Reviewed-
dc.contributor.funderEuropean Commission-
Appears in Collections:(IRII) Artículos
Files in This Item:
File Description SizeFormat 
Learning-weakly-correlated.pdf758,74 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.