English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/12633
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Quantum Gowdy T3 model: a unitary description

AutorCorichi, Alejandro; Cortez, Jerónimo; Mena Marugán, Guillermo A.
Palabras clave[PACS] Canonical quantization (gravitation)
[PACS] Lower dimensional and minisuperspace models in quantum gravity
[PACS] Quantum field theory in curved spacetime
[PACS] Quantum cosmology
Fecha de publicación19-abr-2006
EditorAmerican Physical Society
CitaciónPhysical Review D, 73 ( 8), id. 084020 (2006)
ResumenThe quantization of the family of linearly polarized Gowdy T3 spacetimes is discussed in detail, starting with a canonical analysis in which the true degrees of freedom are described by a scalar field that satisfies a Klein-Gordon type equation in a fiducial time-dependent background. A time-dependent canonical transformation, which amounts to a change of the basic (scalar) field of the model, brings the system to a description in terms of a Klein-Gordon equation on a background that is now static, although subject to a time-dependent potential. The system is quantized by means of a natural choice of annihilation and creation operators. The quantum time evolution is considered and shown to be unitary, so that both the Schrödinger and Heisenberg pictures can be consistently constructed. This has to be contrasted with previous treatments for which time evolution failed to be implementable as a unitary transformation. Possible implications for both canonical quantum gravity and quantum field theory in curved spacetime are noted.
Descripción17 pags.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevD.73.084020
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Corichi.pdf228,97 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.