English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/125698
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorKlaus, Bettina-
dc.contributor.authorKlijn, Flip-
dc.date.accessioned2015-11-25T09:12:42Z-
dc.date.available2015-11-25T09:12:42Z-
dc.date.issued2013-01-
dc.identifierdoi: 10.1016/j.jmateco.2013.03.002-
dc.identifierissn: 0304-4068-
dc.identifier.citationJournal of Mathematical Economics 49(3): 222-229 (2013)-
dc.identifier.urihttp://hdl.handle.net/10261/125698-
dc.description.abstractIn the context of resource allocation on the basis of priorities, Ergin (2002) identifies a necessary and sufficient condition on the priority structure such that the student-optimal stable mechanism satisfies a consistency principle. Ergin (2002) formulates consistency as a local property based on a fixed population of agents and fixed resources-we refer to this condition as local consistency and to his condition on the priority structure as local acyclicity. A related but stronger necessary and sufficient condition on the priority structure such that the student-optimal stable mechanism satisfies a more standard global consistency property is unit acyclicity.We provide necessary and sufficient conditions for the student-optimal stable mechanism to satisfy converse consistency principles. First, we identify a necessary and sufficient condition (local shift-freeness) on the priority structure such that the student-optimal stable mechanism satisfies local converse consistency. Interestingly, local acyclicity implies local shift-freeness and hence the student-optimal stable mechanism more frequently satisfies local converse consistency than local consistency. Second, in order for the student-optimal stable mechanism to be globally conversely consistent, one again has to impose unit acyclicity on the priority structure. Hence, unit acyclicity is a necessary and sufficient condition on the priority structure for the student-optimal stable mechanism to satisfy global consistency or global converse consistency. © 2013 Elsevier B.V.-
dc.description.sponsorshipBK gratefully acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) under grant VIDI-452-06-013. FK gratefully acknowledges support from Plan Nacional I+D+I (ECO2011–29847). He gratefully acknowledges a research fellowship from Harvard Business School-
dc.publisherElsevier-
dc.relation.isversionofPostprint-
dc.rightsopenAccess-
dc.subjectConsistency-
dc.subjectConverse consistency-
dc.subjectPriority structure-
dc.subjectStudent placement-
dc.titleLocal and global consistency properties for student placement-
dc.typeArtículo-
dc.identifier.doi10.1016/j.jmateco.2013.03.002-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.jmateco.2013.03.002-
dc.date.updated2015-11-25T09:12:42Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderComisión Interministerial de Ciencia y Tecnología, CICYT (España)-
dc.contributor.funderNetherlands Organization for Scientific Research-
dc.contributor.funderHarvard Business School-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/100007300es_ES
Appears in Collections:(IAE) Artículos
Files in This Item:
File Description SizeFormat 
Klijn-JMathematicalEconomics-2013-v49-p222.pdf364,2 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.