English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/124623
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorSantacatterina, Fulvio-
dc.contributor.authorChamorro, Margarita-
dc.contributor.authorNúñez de Arenas, Cristina-
dc.contributor.authorNavarro, Carmen-
dc.contributor.authorMartín, Miguel A.-
dc.contributor.authorCuezva, José M.-
dc.contributor.authorSánchez-Aragó, María-
dc.identifierissn: 1479-5876-
dc.identifier.citationJournal of Translational Medicine 13: 65 (2015)-
dc.description.abstractMuscle diseases have been associated with changes in the expression of proteins involved in energy metabolism. To this aim we have developed a number of monoclonal antibodies against proteins of energy metabolism. Methods: Herein, we have used Reverse Phase Protein Microarrays (RPMA), a high throughput technique, to investigate quantitative changes in protein expression with the aim of identifying potential biomarkers in rare neuromuscular diseases. A cohort of 73 muscle biopsies that included samples from patients diagnosed of Duchenne (DMD), Becker (BMD), symptomatic forms of DMD and BMD in female carriers (Xp21 Carriers), Limb Girdle Muscular Dystrophy Type 2C (LGMD2C), neuronal ceroid lipofuscinosis (NCL), glycogenosis type V (Mc Ardle disease), isolated mitochondrial complex I deficiency, intensive care unit myopathy and control donors were investigated. The nineteen proteins of energy metabolism studied included members of the mitochondrial oxidation of pyruvate, the tricarboxylic acid cycle, ß-oxidation of fatty acids, electron transport and oxidative phosphorylation, glycogen metabolism, glycolysis and oxidative stress using highly specific antibodies. Results: The results indicate that the phenotype of energy metabolism offers potential biomarkers that could be implemented to refine the understanding of the biological principles of rare diseases and, eventually, the management of these patients. Conclusions: We suggest that some biomarkers of energy metabolism could be translated into the clinics to contribute to the improvement of the clinical handling of patients affected by rare diseases.-
dc.description.sponsorshipWe thank Dr. Sébastien Tosi (Advanced Digital Microscopy - ADM, IRB Barcelona) for the development of the Image Analysis tool in ImageJ macro language and support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). FS was supported by a pre-doctoral fellowship from FPI-UAM Spain. This work was supported by grants from the Ministerio de Ciencia e Innovación (TREAT-CMT), Ministerio de Economía y Competitividad (SAF2013-41945-R), the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Ministerio de Economía y Competitividad (FIS-ISCIII PI 12/01683 and PI 10/02628), and Comunidad de Madrid (S2011/BMD-2402), Spain. The CBMSO receives an institutional grant from Fundación Ramón Areces.-
dc.publisherBioMed Central-
dc.relation.isversionofPublisher's version-
dc.titleQuantitative analysis of proteins of metabolism by reverse phase protein microarrays identifies potential biomarkers of rare neuromuscular diseases-
dc.description.versionPeer Reviewed-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderCentro de Investigación Biomédica en Red Enfermedades Raras (España)-
dc.contributor.funderComunidad de Madrid-
dc.contributor.funderFundación Ramón Areces-
dc.contributor.funderCSIC - Unidad de Recursos de Información Científica para la Investigación (URICI)-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
Cuezva JM Quantitative.pdf1,32 MBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.