English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/123252
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Environmental processes in Rano Aroi (Easter Island) peat geochemistry forced by climate variability during the last 70kyr

AuthorsMargalef, Olga ; Martínez Cortizas, A. ; Kylander, M.; Pla-Rabes, S.; Cañellas-Boltà, Núria ; Pueyo Mur, Juan José; Sáez, Alberto; Valero-Garcés, Blas L. ; Giralt, Santiago
Issue Date2014
PublisherElsevier
CitationPalaeogeography, Palaeoclimatology, Palaeoecology 414: 438- 450 (2014)
Abstract© 2014 Elsevier B.V. We analyze the geochemistry of Rano Aroi mire record (Easter Island) using bulk peat composition (C, N, S) and stable isotopes (δ13C, δ15N, δ34S) and major, minor and trace elemental compositions obtained by ICP-AES (Al, Ti, Zr, Sc, V, Y, Fe, Mn, Th, Ba, Ca, Mg and Sr). Peat geochemistry and the pollen record are used to reconstruct the environmental changes during the last 70kyr BP. Principal component analysis on ICP-AES data revealed that three main components account for the chemical signatures of the peat. The first component, characterized by lithogenic elements (combined signal of V, Al, Sc, Y, Cr, Cd, Ti, Zr and Cu), evidences long-term changes in the basal fluxes of mineral material into the mire. This component, in combination with stable isotopes and pollen data suggests a link between soil erosion and vegetation cover changes in the Rano Aroi watershed. The second component is identified by the signal of Fe, Mn, Th, Ba, Zr and Ti, and is indicative of strong runoff events during enhanced precipitation periods. The third component (tied mainly to Ca, Sr and Mg) reflects a strong peat oxidation event that occurred during an arid period with more frequent droughts, sometime between 39 and 31kyr BP. Correlation coefficients and a multiple regression model (PCR analysis) between peat organic chemistry and the principal components of ICP-AES analysis were calculated. Isotope chemistry of the peat organic matter further contributes to define Rano Aroi environmental history: δ13C data corroborates a vegetation shift documented by the palynological record from C4 to C3 between 55 and 45calkyr BP; the δ15N record identifies periods of changes in mire productivity and denitrification processes, while the δ34S peat signature indicates a marine origin of S and significant diagenetic cycling. The geochemical and environmental evolution of Rano Aroi mire is coherent with the regional climatic variability and suggests that climate was the main forcing in mire evolution during the last 70kyr BP. The coupling of geochemical and biological proxies improves our ability to decipher depositional processes in tropical and subtropical peatlands and to use these sequences for paleoenvironmental and paleoclimate reconstructions.
Publisher version (URL)http://dx.doi.org/10.1016/j.palaeo.2014.09.025
URIhttp://hdl.handle.net/10261/123252
DOI10.1016/j.palaeo.2014.09.025
Identifiersdoi: 10.1016/j.palaeo.2014.09.025
issn: 0031-0182
Appears in Collections:(IPE) Artículos
(ICTJA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.