English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/122382
Compartir / Impacto:
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


TRUFA: A user-friendly web server for de novo RNA-seq analysis using cluster computing

AutorKornobis, Etienne; Cabellos, Luis ; Aguilar, Fernando ; Frías-López, Cristina; Rozas, Julio; Marco, Jesús ; Zardoya, Rafael
Fecha de publicación24-may-2015
EditorLibertas Académica
CitaciónEvolutionary Bioinformatics 11: 97-104 (2015)
ResumenApplication of next-generation sequencing (NGS) methods for transcriptome analysis (RNA-seq) has become increasingly accessible in recent years and are of great interest to many biological disciplines including, eg, evolutionary biology, ecology, biomedicine, and computational biology. Although virtually any research group can now obtain RNA-seq data, only a few have the bioinformatics knowledge and computation facilities required for transcriptome analysis. Here, we present TRUFA (TRanscriptome User-Friendly Analysis), an open informatics platform offering a web-based interface that generates the outputs commonly used in de novo RNA-seq analysis and comparative transcriptomics. TRUFA provides a comprehensive service that allows performing dynamically raw read cleaning, transcript assembly, annotation, and expression quantification. Due to the computationally intensive nature of such analyses, TRUFA is highly parallelized and benefits from accessing high-performance computing resources. The complete TRUFA pipeline was validated using four previously published transcriptomic data sets. TRUFA’s results for the example datasets showed globally similar results when comparing with the original studies, and performed particularly better when analyzing the green tea dataset. The platform permits analyzing RNA-seq data in a fast, robust, and user-friendly manner. Accounts on TRUFA are provided freely upon request at https://trufa.ifca.es.
Versión del editorhttps://doi.org/10.4137/EBO.S23873
Identificadoresdoi: 10.4137/EBO.S23873
issn: 1176-9343
Aparece en las colecciones: (MNCN) Artículos
(IFCA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Evol Bioinf 11 97-104 (2015).pdf1,29 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.