English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/121945
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Título

Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin

AutorLlirós, Marc; García-Armisen, Tamara; Darchambeau, F.; Morana, Cedric; Triadó-Margarit, Xavier ; Inceoğlu, Özgül; Borrego, Carles M.; Bouillon, Steven; Servais, Pierre; Borges, Alberto V.; Descy, Jean-Pierre; Canfield, Don E.; Crowe, Sean A.
Fecha de publicación2015
EditorNature Publishing Group
CitaciónScientific Reports 5:13803 (2015)
ResumenIron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth’s early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth’s largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.
Descripción8 páginas, 3 figuras
Versión del editorhttp://dx.doi.org/10.1038/srep13803
URIhttp://hdl.handle.net/10261/121945
DOI10.1038/srep13803
ISSN2045-2322
E-ISSN2045-2322
Aparece en las colecciones: (CEAB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Llirós_2015_srep13803.pdf1,1 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.