Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117644
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Influence of structural and magnetic properties in the heating performance of multicore bioferrofluids

AutorBustamante, R. CSIC; Millán, Ángel CSIC ORCID ; Piñol, Milagros CSIC ORCID; Palacio, Fernando CSIC ORCID; Carrey, J.; Respaud, M.; Fernández-Pacheco, Amalio CSIC ORCID ; Silva, Nuno Joâo O.
Fecha de publicación2013
EditorAmerican Physical Society
CitaciónPhysical Review B 88: 184406 (2013)
ResumenBiomedical applications of superparamagnetic iron oxide particles have been of interest for quite a number of years. Recent developments show that multifunctionality can be efficiently achieved using polymers to coat the particles and to provide anchoring elements to their surface. This leads to the formation of nanobeads with a reduced number of particles trapped by the polymeric structure. While the magnetothermic behavior of isolated nanoparticles has been a subject of interest over the past several years, multicore magnetic nanobeads have thus far not received the same attention. The influence of structural and magnetic properties in the hyperthermia performance of a series of magnetic fluids designed for biomedical purposes is studied here. The fluids are made of maghemite multicore polymeric beads, with variable nanoparticle size and hydrodynamic size, dispersed in a buffer solution. The specific loss power (SLP) was measured from 5 to 100 kHz with a field intensity of 21.8 kA/m. SLP increases with increasing magnetic core size, reaching 32 W/g Fe 2O3 at 100 kHz for 16.2 nm. Within the framework of the linear response theory, a graphical construction is proposed to describe the interplay of both size distributions and magnetic properties in the heating performance of such fluids in a given frequency range. Furthermore, a numerical model is developed to calculate the spare contribution of Néel and Brown relaxation mechanisms to SLP, which gives a fair reproduction of the experimental data. © 2013 American Physical Society.
DescripciónUnder the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Versión del editorhttp://dx.doi.org/10.1103/PhysRevB.88.184406
http://creativecommons.org/licenses/by/3.0/
URIhttp://hdl.handle.net/10261/117644
DOI10.1103/PhysRevB.88.184406
Identificadoresdoi: 10.1103/PhysRevB.88.184406
issn: 1098-0121
e-issn: 1550-235X
Aparece en las colecciones: (ICMA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
multicore bioferrofluids.pdf2,98 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

12
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

13
checked on 25-feb-2024

Page view(s)

304
checked on 23-abr-2024

Download(s)

310
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.