English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117406
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 9 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures
Autor : Palazón Tabuenca, Leticia ; Latorre Garcés, Borja ; Gaspar Ferrer, Leticia ; Blake, William H.; Smith, Hugh G.; Navas Izquierdo, Ana
Fecha de publicación : nov-2015
Editor: Elsevier
Citación : Palazón L, Latorre B, Gaspar L, Blake WH, Smith HG, Navas A. Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures. Science of the Total Environment 532: 456–466 (2015)
Resumen: Information on sediment sources in river catchments is required for effective sediment control strategies, to understand sediment, nutrient and pollutant transport, and for developing soil erosion management plans. Sediment fingerprinting procedures are employed to quantify sediment source contributions and have become a widely used tool. As fingerprinting procedures are naturally variable and locally dependant, there are different applications of the procedure. Here, the auto-evaluation of different fingerprinting procedures using virtual sample mixtures is proposed to support the selection of the fingerprinting procedure with the best capacity for source discrimination and apportionment. Surface samples from four land uses from a Central Spanish Pyrenean catchment were used i) as sources to generate the virtual sample mixtures and ii) to characterise the sources for the fingerprinting procedures. The auto-evaluation approach involved comparing fingerprinting procedures based on four optimum composite fingerprints selected by three statistical tests, three source characterisations (mean, median and corrected mean) and two types of objective functions for the mixing model. A total of 24 fingerprinting procedures were assessed by this new approach which were solved by Monte Carlo simulations and compared using the root mean squared error (RMSE) between known and assessed source ascriptions for the virtual sample mixtures. It was found that the source ascriptions with the highest accuracy were achieved using the corrected mean source characterisations for the composite fingerprints selected by the Kruskal Wallis H-test and principal components analysis. Based on the RMSE results, high goodness of fit (GOF) values were not always indicative of accurate source apportionment results, and care should be taken when using GOF to assess mixing model performance. The proposed approach to test different fingerprinting procedures using virtual sample mixtures provides an enhanced basis for selecting procedures that can deliver optimum source discrimination and apportionment.
Descripción : 37 Pags.- 4 Tabls.- 8 Figs. The definitive version is available at: http://www.sciencedirect.com/science/journal/00489697
Versión del editor: http://dx.doi.org/10.1016/j.scitotenv.2015.05.003
URI : http://hdl.handle.net/10261/117406
DOI: 10.1016/j.scitotenv.2015.05.003
ISSN: 0048-9697
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PalazonL_SciTotEnvironm_2015.pdf914,74 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.