Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/11702
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

The CP43 Proximal Antenna Complex of Higher Plant Photosystem II Revisited: Modeling and Hole Burning Study. I

AutorDang, Nhan C.; Zazubovich, Valter; Reppert, Mike; Neupane, Bhanu; Picorel Castaño, Rafael CSIC ORCID ; Seibert, Michael; Jankowiak, Ryszard J.
Fecha de publicaciónago-2008
EditorAmerican Chemical Society
CitaciónJ. Phys. Chem. B, 2008, 112 (32), pp 9921–9933
ResumenThe CP43 core antenna complex of photosystem II is known to possess two quasi-degenerate “red”-trap states (Jankowiak, R. et al. J. Phys. Chem. B 2000, 104, 11805). It has been suggested recently ( Zazubovich, V.; Jankowiak, R. J. Lumin. 2007, 127, 245) that the site distribution functions of the red states (A and B) are uncorrelated and that narrow holes are burned in the subpopulations of chlorophylls (Chls) from states A and B that are the lowest-energy Chl in their complex and previously thought not to transfer energy. This model of uncorrelated excitation energy transfer (EET) between the quasidegenerate bands is expanded by taking into account both electron−phonon and vibrational coupling. The model is applied to fit simultaneously absorption, emission, zero-phonon action, and transient hole burned (HB) spectra obtained for the CP43 complex with minimized contribution from aggregation. It is demonstrated that the above listed spectra can be well-fitted using the uncorrelated EET model, providing strong evidence for the existence of efficient energy transfer between the two lowest energy states, A and B (either from A to B or from B to A), in CP43. Possible candidate Chls for the low-energy A and B states are discussed, providing a link between CP43 structure and spectroscopy. Finally, we propose that persistent holes originate from regular NPHB accompanied by the redistribution of oscillator strength due to excitonic interactions, rather than photoconversion involving Chl−protein hydrogen bonding, as suggested before (Hughes J. L. et al. Biochemistry 2006, 45, 12345). In the accompanying paper ( Reppert, M.; Zazubovich, V.; Dang, N. C.; Seibert, M.; Jankowiak, R. J. Phys. Chem. B 2008, 9934), it is demonstrated that the model discussed in this manuscript is consistent with excitonic calculations, which also provide very good fits to both transient and persistent HB spectra obtained under non-line-narrowing conditions.
DescripciónThe final version is available at: http://pubs.acs.org/journal/jpcbfk
Versión del editorhttp://pubs.acs.org/doi/abs/10.1021/jp801373c
URIhttp://hdl.handle.net/10261/11702
DOI10.1021/jp801373c
ISSN1520-6106
E-ISSN1520-5207
Aparece en las colecciones: (EEAD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
PicorelR_JPhysChemB_2008.pdf979,43 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

39
checked on 03-abr-2024

WEB OF SCIENCETM
Citations

36
checked on 27-feb-2024

Page view(s)

397
checked on 22-abr-2024

Download(s)

351
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.