English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/116356
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorGonzález-Avella, Juan Carlos-
dc.contributor.authorCosenza, Mario G.-
dc.contributor.authorSan Miguel, Maxi-
dc.date.accessioned2015-06-10T10:49:52Z-
dc.date.available2015-06-10T10:49:52Z-
dc.date.issued2014-
dc.identifierdoi: 10.1016/j.physa.2013.12.035-
dc.identifierissn: 0378-4371-
dc.identifier.citationPhysica A: Statistical Mechanics and its Applications 399: 24-30 (2014)-
dc.identifier.urihttp://hdl.handle.net/10261/116356-
dc.description.abstractWe investigate the emergence of localized coherent behavior in systems consisting of two populations of social agents possessing a condition for non-interacting states, mutually coupled through global interaction fields. We employ two examples of such dynamics: (i) Axelrod's model for social influence, and (ii) a discrete version of a bounded confidence model for opinion formation. In each case, the global interaction fields correspond to the statistical mode of the states of the agents in each population. In both systems we find localized coherent states for some values of parameters, consisting of one population in a homogeneous state and the other in a disordered state. This situation can be considered as a social analogue to a chimera state arising in two interacting populations of oscillators. In addition, other asymptotic collective behaviors appear in both systems depending on parameter values: a common homogeneous state, where both populations reach the same state; different homogeneous states, where both population reach homogeneous states different from each other; and a disordered state, where both populations reach inhomogeneous states. © 2013 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipJ.C.G-A is supported by project No. 500612/2013-7: 151270/2013-9 from CNPq, Brazil. M.G.C. is grateful to the Senior Associates Programme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, and acknowledges support from CDCHTA, Universidad de Los Andes, Venezuela, under project No. C-1827-13-05-B. M.S.M. acknowledges support from Comunitat Autònoma de les Illes Balears, FEDER, and MINECO, Spain, under project No. FIS2007-60327.-
dc.publisherElsevier-
dc.rightsclosedAccess-
dc.subjectChimera states-
dc.subjectSocial dynamics-
dc.subjectMass media-
dc.subjectNetworks-
dc.titleLocalized coherence in two interacting populations of social agents-
dc.typeartículo-
dc.identifier.doi10.1016/j.physa.2013.12.035-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.physa.2013.12.035-
dc.date.updated2015-06-10T10:49:52Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderConselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil)-
dc.contributor.funderAbdus Salam International Centre for Theoretical Physics-
dc.contributor.funderUniversidad de Los Andes (Colombia)-
dc.contributor.funderConsejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes (Venezuela)-
dc.contributor.funderGovern de les Illes Balears-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderEuropean Commission-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003593es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001681es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100006070es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100006395es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.