Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres

AuthorsGómez Borrego, Ángeles CSIC ORCID ; Garavaglia, L.; Kalkreuth, W. D.
KeywordsBiomass chars
Biomass reactivity
Biomass pyrolysis
High heating rate chars
Issue Date31-Jan-2009
CitationInternational Journal of Coal Geology 77(3/4): 409-415 (2009)
AbstractPartial substitution of coal by biomass in combustion systems in conjunction with advanced technologies for CO2 capture and storage may result in a significant reduction of greenhouse gases emissions. This study investigates three biomass chars produced from rice husk, forest residuals and wood chips under N2 and CO2 atmospheres using a drop tube furnace (DTF) heated at 950 °C. The char constitutes an unburned residue which has been devolatilized under conditions resembling in thermal history those in full scale boilers. Higher weight losses were achieved under N2 than under CO2 for each type of biomass, and the highest weight loss was that of wood chips biomass, followed by forest residuals and then rice husk. The results indicate significant morphological differences between the biomass chars produced. The wood chips yielded thick-walled chars with a cenospheric shape very similar to those of low-rank vitrinite. The forest residual chars were angular in shape and often had a tenuinetwork structure, while the rice husk chars retained their vegetal structure. Overall, the studied biomass chars can be described as microporous solids. However, in the case of the rice husk, the silica associated to the char walls was essentially mesoporous, increasing the adsorption capacity of the rice husk chars. The atmosphere in the DTF affects the development of porosity in the chars. The pore volumes of the rice husk and forest residual chars prepared under a CO2 atmosphere were higher than those of chars prepared under a N2 atmosphere, whereas the opposite was the case with the wood chip chars. The chars that experienced the most drastic devolatilization were those with the lowest intrinsic reactivity. This indicates a more efficient reorganization of the chemical structure that reduces the number of active sites available for oxygen attack. Overall a similar morphology, optical texture, specific surface area and reactivity were found for the biomass chars generated under N2 and CO2, which is a similar result to that obtained for coal chars.
Description7 pages, 6 figures, 3 tables. -- Available online 4 July 2008. -- Issue title: CSCOP-TSOP-ICCP 2007: Selected papers from the 2007 joint meeting of CSCOP-TSOP-ICCP: Unconventional petroleum systems & advances in organic petrology and geochemistry (Victoria BC, Sunday, August 19th to Saturday August 25th, 2007)
Publisher version (URL)
Appears in Collections:(INCAR) Artículos

Show full item record
Review this work


checked on May 23, 2022


checked on May 21, 2022

Page view(s)

checked on May 25, 2022

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.