Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite

AuthorsMarques, M.; Suárez Ruiz, Isabel CSIC ; Flores, D.; Guedes, A.; Rodrigues, S.
KeywordsHigh-rank coals
Vitrinite anisotropy
Micro-Raman spectroscopy
X-ray diffraction
Chemical compositions
Issue Date31-Jan-2009
CitationInternational Journal of Coal Geology 77(3/4): 377-382 (2009)
AbstractIn order to identify the parameters that best characterize the chemical and structural evolution of organic matter during coalification, the relationships between optical, chemical and micro-structural parameters in high-rank coals and natural graphite were studied. The samples include anthracites from Peñarroya–Belmez–Espiel Basin (Spain), Douro Basin (Portugal), and Alto Chicama Basin (Peru); and natural graphite from Canada, Mozambique, and Austria.
Correlations between the following optical parameters were assessed: vitrinite random reflectance (Rr), Reflectance Indicating Surfaces (RIS) axis (RMAX, RINT and RMIN), and RIS parameters (Ram, Rev and Rst), as well as Bw and AI anisotropy parameters. Furthermore, the chemical parameters used were chosen according to their significant variation in coals, namely volatile matter, carbon, and hydrogen contents calculated in dry ash free basis (VMdaf, Cdaf, Hdaf), as well as the H/C atomic ratio. Structural organization was characterized by micro-Raman spectroscopy and XRD. Raman parameters used were the full width at half maximum (FWHM) and position of G and D1 bands on the first-order Raman spectrum, and the ID1/IG intensity area ratio. The selected XRD parameters were interlayer spacing d002, and crystallite sizes La and Lc.
Results show that: (i) RMAX RIS axis seems to correlate best with chemical and micro-structural parameters; (ii) for the majority of studied samples, Hdaf and H/C atomic ratio are the only chemical parameters with significant correlations with RMAX; (iii) the FWHM of the G band of Raman spectrum shows good linear correlation with the XRD parameter d002; and, (iv) structural organization of carbon materials, as measured by trends in their optical and crystalline parameters, is influenced by their hydrogen content (daf basis) and therefore by the H/C atomic ratio.
Description6 pages, 6 figures, 4 tables. -- Available online 4 July 2008. -- Issue title: CSCOP-TSOP-ICCP 2007: Selected papers from the 2007 joint meeting of CSCOP-TSOP-ICCP: Unconventional petroleum systems & advances in organic petrology and geochemistry (Victoria BC, Sunday, August 19th to Saturday August 25th, 2007)
Publisher version (URL)
Appears in Collections:(INCAR) Artículos

Show full item record
Review this work


checked on May 22, 2022


checked on May 23, 2022

Page view(s)

checked on May 24, 2022

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.