English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/11198
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Changes in the carotenoid metabolism of capsicum fruits during application of modelized slow drying process for paprika production

AutorPérez Gálvez, Antonio ; Hornero-Méndez, Dámaso ; Mínguez Mosquera, María Isabel
Palabras claveCapsicum annuum
Ascorbic acid
Drying process
Paprika processing
Fecha de publicación15-ene-2004
EditorAmerican Chemical Society
CitaciónJournal of Agricultural and Food Chemistry 52(3): 518-522 (2004)
ResumenA temperature profile simulating the traditional slow drying process of red pepper fruits, which is conducted in La Vera region (Spain) for paprika production, was developed. Carotenoid and ascorbic acid content, as well as moisture of fruits, were monitored during the slow drying process designed. Data obtained suggested that the evolution of carotenoid concentration, the main quality trait for paprika, directly depend on the physical conditions imposed. During the drying process, three different stages could be observed in relation to the carotenoids. The first stage corresponds to a physiological adaptation to the new imposed conditions that implied a decrease (ca. 20%) in the carotenoid content during the first 24 h. After that short period and during 5 days, a second stage was noticed, recovering the biosynthetic (carotenogenic) capability of the fruits, which denotes an accommodation of the fruits to the new environmental conditions. During the following 48 h (third stage) a sharp increase in the carotenoid content was observed. This last phenomenon seems to be related with an oxidative-thermal stress, which took place during the first stage, inducing a carotenogenesis similar to that occurring in over-ripening fruits. Results demonstrate that a fine control of the temperature and moisture content would help to positively modulate carotenogenesis and minimize catabolism, making it possible to adjust the drying process to the ripeness stage of fruits with the aim of improving carotenoid retention and therefore quality of the resulting product. In the case of ascorbic acid, data demonstrated that this compound is very sensitive to the drying process, with a decrease of about 76% during the first 24 h and remaining only at trace levels during the rest of the process. Therefore, no antioxidant role should be expected from ascorbic acid during the whole process and in the corresponding final product (paprika), despite that red pepper fruit is well-known to be rich on this compound.
Descripción5 pages, 4 figures.- PMID: 14759142 [PubMed].-- Printed version published on Feb 11, 2004.
Versión del editorhttp://dx.doi.org/10.1021/jf0350616
Aparece en las colecciones: (IG) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.