English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/110613
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Planck 2013 results. XXII. Constraints on inflation

AuthorsBucher, M.; Barreiro, R. Belén ; Curto, Andrés ; Diego, José María ; González-Nuevo, J. ; Herranz, D. ; López-Caniego, M. ; Martínez-González, Enrique ; Rebolo López, Rafael; Toffolatti, L. ; Vielva, P. ; Planck Collaboration
KeywordsInflation
Cosmic background radiation
Early Universe
Issue Date2014
PublisherEDP Sciences
CitationAstronomy and Astrophysics 571: A22 (2014)
AbstractWe analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0.9603 ± 0.0073, ruling out exact scale invariance at over 5 s. Planck establishes an upper bound on the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V>< 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n = 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns/dlnk =-0.0134 ± 0.0090. We verify these conclusions through a numerical analysis, which makes no slow-roll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by 2eff 10 ; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the 2eff by approximately 4 as a result of slightly lowering the theoretical prediction for the l40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
Publisher version (URL)http://dx.doi.org/10.1051/0004-6361/201321569
URIhttp://hdl.handle.net/10261/110613
DOI10.1051/0004-6361/201321569
Identifiersdoi: 10.1051/0004-6361/201321569
issn: 0004-637X
e-issn: 1432-0746
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
XXII. Constraints on inflation.pdf4,76 MBAdobe PDFThumbnail
View/Open
Show full item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.