English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/110151
Compartir / Impacto:
Título : Rainfall erosivity in Europe
Autor : Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Perčec Tadić, Melita; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago ; Alewell, Christine
Palabras clave : RUSLE
Rainfall intensity
Erosivity density
Soil erosion
Fecha de publicación : abr-2015
Editor: Elsevier
Citación : Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Perčec Tadić M, Michaelides S, Hrabalíková M, Olsen P, Aalto J, Lakatos M, Rymszewicz A, Dumitrescu A, Beguería S, Alewell C. Rainfall erosivity in Europe. Science of The Total Environment 511: 801–814 (2015)
Resumen: Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha− 1 h− 1 yr− 1, with the highest values (> 1000 MJ mm ha− 1 h− 1 yr− 1) in the Mediterranean and alpine regions and the lowest (< 500 MJ mm ha− 1 h− 1 yr− 1) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods.
Descripción : 43 Pags.- 4 Tabls.- 5 Figs. The definitive version is available at: http://www.sciencedirect.com/science/journal/00489697
Versión del editor: http://dx.doi.org/10.1016/j.scitotenv.2015.01.008
URI : http://hdl.handle.net/10261/110151
DOI: 10.1016/j.scitotenv.2015.01.008
ISSN: 0048-9697
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BegueriaS_SciTotEnv_2015.pdf954,27 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.