English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/108061
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Amphiphilic polysaccharide nanocarriers with antioxidant properties

AuthorsBossio, Ornella; Gómez-Mascaraque, Laura G. ; Fernández-Gutiérrez, Mar ; Vázquez Lasa, Blanca; San Román, Julio
KeywordsNanoparticles
1-diphenyl-2-picryl-hydrazyl
Cytotoxicity
Amphiphilic chitosan
Retinyl palmitate
Issue Date2014
PublisherSage Publications
CitationJournal of Bioactive and Compatible Polymers 29: 589- 606 (2014)
AbstractThe development of self-assembled nanocarriers for the encapsulation of hydrophobic antioxidants is of growing interest. Self-assembled amphiphilic chitosan conjugate nanocarriers that stabilize antioxidants were prepared based on the concept that both the nanocarrier and the antioxidant bear similar hydrophobic moieties able to establish hydrophobic interactions. This work describes the preparation and characterization of a system consisting of a palmitoyl chitosan conjugate and retinyl palmitate. Palmitic acid was coupled to chitosan using a carbodiimide-mediated coupling reaction, and two different palmitoyl chitosan conjugates were obtained by varying the coupling system. Palmitoyl chitosan conjugates self-assembled to form nanoparticles in aqueous medium varying in mean average diameter (Dh) between 200 and 437 nm. Retinyl palmitate-loaded nanoparticles were prepared by a solvent displacement method using dialysis, with loading efficiencies of 77.5% and 88.6%, loading contents of 12.6% and 14.6%, and Dh values of approximately 280 nm. The zeta potential (ζ) of all palmitoyl chitosan nanoparticle were above 25 mV, but ζ slightly increased in the retinyl palmitate-loaded nanoparticle. Antioxidant activity of loaded nanoparticles was confirmed using the 1,1-diphenyl-2-picryl-hydrazyl radical scavenging assay. The in vitro cytotoxicity of blank and loaded nanoparticles was determined using fibroblasts of human embryonic skin. All nanoparticles were not cytotoxic when they were tested with methylthiazol tetrazolium and lactate dehydrogenase tests. The obtained results suggest that the system has potential as a nanocarrier for dermal application. Additionally, the approach considered in this article can be expanded to other nanocarrier/antioxidant systems.
URIhttp://hdl.handle.net/10261/108061
DOI10.1177/0883911514554336
Identifiersdoi: 10.1177/0883911514554336
issn: 0883-9115
e-issn: 1530-8030
Appears in Collections:(ICTP) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.