English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102650
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Fokker-planck approach to quantum lattice hamiltonians

AutorJiménez, Fernando; Sierra, Germán
Palabras claveIsing problems
[PACS] Order-disorder transformations
statistical mechanics of model systems
[PACS] Lattice theory and statistics
[PACS] Other topics in mathematical methods in physics
[PACS] Stochastic processes
Fecha de publicación1996
CitaciónNuclear Physics B 458: 640- 668 (1996)
ResumenFokker-Planck equations have been applied in the past to field theory topics such as the stochastic quantization and the stabilization of bottomless action theories. In this paper we give another application of the FP-techniques in a way appropriate to the study of the ground state, the excited states and the critical behaviour of quantum lattice hamiltonians. Our approach is based on the choice of an exponential or Jastrow-like state which becomes the exact ground state of a discrete FP-hamiltonian. The >variational> parameters entering into the ansatz are fixed by forcing the FP-hamiltonian to coincide with the original hamiltonian except for terms not included in the ansatz. To illustrate the method we apply it to the Ising model in a transverse field (ITF). In one dimension we build up a FP-hamiltonian belonging to the same universality class as the standard ITF model. Likewise some considerations concerning the Potts model are outlined. (c) 1996 Elsevier Science B.V.
Identificadoresdoi: 10.1016/0550-3213(95)00565-X
issn: 0550-3213
Aparece en las colecciones: (CFMAC-IFF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
FernandoJ.pdf384,16 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.