English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/102542
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorLlorente, Irene-
dc.contributor.authorFajardo, S.-
dc.contributor.authorBastidas Rull, José María-
dc.identifierdoi: 10.1007/s10008-013-2267-0-
dc.identifierissn: 1432-8488-
dc.identifier.citationJournal of Solid State Electrochemistry 18: 293-307 (2014)-
dc.description.abstractThe discovery of electrokinetic phenomena by Reuss in 1808 and further investigations that gave rise to the concept of the electrical double layer have played an important role in the understanding of colloidal stability. Electrokinetic phenomena are a family of effects in which a liquid moves tangentially to a charged surface. Well-known phenomena of this kind are electrophoresis, electro-osmosis, streaming potential, and sedimentation potential. A review of parameters involved in the electrochemistry of suspensions is made. The practical applications of these phenomena have become widespread in a broad range of research fields such as biomaterials, biofilms, electrokinetic waste remediation, membranes, nuclear and fossil-fired power plants, adhesive and sealant science, and concrete science. The purpose of this paper is to provide an overview of electrokinetic phenomena and their application to surface modification and characterization in a large number of research fields such as corrosion and protection processes, environmental remediation (soil and sediments, transport processes, inorganic pollutants, solid particle surfaces, filter membranes, and biosorption phenomena), cement-based systems, and biological systems. © 2013 Springer-Verlag Berlin Heidelberg.-
dc.titleApplications of electrokinetic phenomena in materials science-
dc.description.versionPeer Reviewed-
Appears in Collections:(CENIM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.