English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102347
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 1 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Firmness prediction in Prunus persica ‘Calrico’ peaches by Visible/short wave near infrared spectroscopy and acoustic measurements using optimized linear and non-linear chemometric models (Article in press)

AutorLafuente Rosales, Victoria ; Herrera Maldonado, Luis Javier; Pérez, María del Mar; Val Falcón, Jesús ; Negueruela Suberviola, Ángel Ignacio
Palabras claveNIR
Acoustic system
Firmness
Peaches
Fecha de publicación2015
EditorSociety of Chemical Industry
Wiley-Blackwell
CitaciónLafuente V, Herrera LJ, Pérez MD, Val J, Negueruela I. Firmness prediction in Prunus persica ‘Calrico’ peaches by Visible/short wave near infrared spectroscopy and acoustic measurements using optimized linear and non-linear chemometric models (Article in press). Journal of the Science of Food and Agriculture (Available online 15 September 2014) (DOI: 10.1002/jsfa.6916)
ResumenIn this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit ‘Calrico’ (n=260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using PLS and LS-SVM regression methods. Also, a Mutual Information (MI)-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R2) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R2 values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed MI-based variable selection algorithm was a powerful tool for the selection of the most relevant variables.
Descripción16 p., 2 fig., 2 tab.
Versión del editorhttp://dx.doi.org/10.1002/jsfa.6916
URIhttp://hdl.handle.net/10261/102347
DOI10.1002/jsfa.6916
ISSN0022-5142
E-ISSN1097-0010
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ValJ_JSciFoodAgric_2014.pdf752,53 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.