English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/10219
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Simple reflectance indices track heat and water stress induced changes in steady state chlorophyll fluorescence

AuthorsDobrowski, S. Z.; Pushnik, J. C.; Zarco-Tejada, Pablo J. ; Ustin, S. L.
KeywordsPlant stress monitoring
Chlorophyll fluorescence
Remote sensing
Photochemical quenching
Non-photochemical quenching
Grapevines
Issue Date2005
PublisherElsevier
CitationRemote Sensing of Environment, 97(3), 403-414
AbstractNon-invasive remote sensing techniques for monitoring plant stress and photosynthetic status have received much attention. The majority of published vegetation indices are not sensitive to rapid changes in plant photosynthetic status brought on by common environmental stressors such as diurnal fluxes in irradiance and heat. This is due to the fact that most vegetation indices have no direct link to photosynthetic functioning beyond their sensitivity to canopy structure and pigment concentration changes. In contrast, this study makes progress on a more direct link between passive reflectance measurements and plant physiological status through an understanding of photochemical quenching (qP) and non-photochemical quenching processes. This is accomplished through the characterization of steady-state fluorescence (Fs) and its influence on apparent reflectance in the red-edge spectral region. A series of experiments were conducted under controlled environmental conditions, linking passive reflectance measurements of a grapevine canopy (Vitis vinifera L. cv. Cabernet Sauvignon) to leaf level estimates of CO2 assimilation (A), stomatal conductance (g), qP, and Fs. Plant stress was induced by imposing a diurnal heat stress and recovery event and by withholding water from the plant canopy over the course of the experiment. We outlined evidence for a link between Fs and photosynthetic status, identified the Fs signal in passive remote sensing reflectance data, and related reflectance-derived estimates of Fs to plant photosynthetic status. These results provide evidence that simple reflectance indices calculated in the red-edge spectral region can track temperature and water-induced changes in Fs and, consequently, provide a rapid assessment of plant stress that is directly linked to plant physiological processes.
Publisher version (URL)http://dx.doi.org/10.1016/j.rse.2005.05.006
URIhttp://hdl.handle.net/10261/10219
DOI10.1016/j.rse.2005.05.006
ISSN0034-4257
Appears in Collections:(IAS) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.