English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/100957
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 1 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory

Autor Ouazaa, Sofiane ; Burguete Tolosa, Javier ; Burguete Tolosa, Javier ; Paniagua Antón, Pilar ; Salvador Esteban, Raquel ; Zapata Ruiz, Nery
Palabras clave sprinkler irrigation
ballistic model
center-pivot
kinetic energy losses
Fecha de publicación jul-2014
EditorInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (España)
Citación Ouazaa S, Burguete J, Paniagua P, Salvador R, Zapata N. Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory. Spanish Journal of Agricultural Research 12 (3): 850-864 (2014)
ResumenBallistic simulation of the spray sprinkler for self-propelled irrigation machines requires the incorporation of the effect of the jet impact with the deflecting plate. The kinetic energy losses produced by the jet impact with the spray plate were experimentally characterized for different nozzle sizes and two working pressures for fixed spray plate sprinklers (FSPS). A technique of low speed photography was used to determine drop velocity at the point where the jet is broken into droplets. The water distribution pattern of FSPS for different nozzle sizes, working at two pressures and under different wind conditions were characterized in field experiments. The ballistic model was calibrated to simulate water distribution in different technical and meteorological conditions. Field experiments and the ballistic model were used to obtain the model parameters (D50, n, K1and K2). The results show that kinetic energy losses decrease with nozzle diameter increments; from 80% for the smallest nozzle diameter (2 mm) to 45% for nozzle diameters larger than 5.1 mm, and from 80% for the smallest nozzle diameter (2 mm) to 34.7% for nozzle diameters larger than 6.8 mm, at 138 kPa and 69 kPa working pressures, respectively. The results from the model compared well with field observations. The calibrated model has reproduced accurately the water distribution pattern in calm (r=0.98) and high windy conditions (r=0.76). A new relationship was found between the corrector parameters (K1’ and K2’) and the wind speed. As a consequence, model simulation will be possible for untested meteorological conditions.
Descripción 15 Pags.- 6 Figs.- 4 Tabls. This work was selected by the Organizing Committee of the XXXI Spanish National Irrigation Congress (XXXI Congreso Nacional de Riegos) to be submitted for publication in this journal.
Versión del editorhttp://dx.doi.org/10.5424/sjar/2014123-5507
URI http://hdl.handle.net/10261/100957
DOI10.5424/sjar/2014123-5507
ISSN2171-9292
E-ISSN1695-971X
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ZapataN_JAgricRes_2014.pdf691,42 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.