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Abstract 

The framework to describe the out of equilibrium free electrons in cold plasmas is developed 

assuming the electron entropy is defined through the Boltzmann H-theorem. Our theory 

explains why the Saha-Boltzmann relation among higher-lying excited states by means of the 

electron kinetic temperature is fulfilled, even when free electrons are far from equilibrium. The 

thermodynamic electron temperature, pressure and chemical potential have been introduced 

through the derivatives of the electron entropy. It is demonstrated that under usual conditions in 

cold plasmas, e.g. when the electron distribution function possesses the Maxwellian, 

Druyvestein or Kappa functional forms, kinetic and thermodynamic electron temperatures yield 

same value. 
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The understanding and characterization of non-thermal plasmas is without doubts one of the 

most relevant problems in the next decades. Their continuous appearance in space science, 

nuclear fusion, nanotechnology or biomedical applications (see for instance [1-7]), among 

others, are posing numerous challenges concerning their dynamics and properties. Unlike 

thermal plasmas, which may be considered at Local Thermodynamic Equilibrium (LTE), non-

thermal plasmas behave as multiple interacting fluids with different dynamics: heavy neutral 

particles are usually assumed in LTE whereas free electrons are far from LTE and described by 

means of the Boltzmann kinetic equation [8]. Both fluids, heavy neutral particles and electrons, 

interact through elastic and inelastic processes that affect the bounded electron density in 

excited states, which also deviate from LTE. A common quantity to describe the free electron 

population is the so-called electron kinetic temperature, eT , whose definition is extrapolated 

from a LTE relation 

  
2

3
B ek T  , (1) 

where Bk  is the Boltzmann constant and   the electron mean kinetic energy. Eq.(1) contrasts 

with the definition of temperature made through thermodynamic principles and related to the 

changes of entropy with energy. In fact, the thermodynamic definition of temperature is 

inherently connected to the concept of thermal equilibrium, by which two interacting systems 

reach a steady state defined by a common value of their temperatures. Since Eq.(1) extrapolates 

a LTE relation for a non-LTE system, the kinetic temperature, as such, should be understood as 

a measure of   with no thermodynamic implications. 

Despite the considerations above, theoretical and experimental evidences in the literature show 

that there is an ionization/recombination balance between the (out of equilibrium) free electrons 

and higher-lying excited states of neutral particles defined by the electron kinetic temperature: 

more than two decades ago, Fujimoto et. al [9] and van der Mullen [10] published two seminal 

works about the thermodynamic equilibrium in non-thermal Hydrogen-like plasmas. These 
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works pointed out that higher-lying excited states, defined by an effective quantum number, p , 

fulfilled the relation  
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where pn  is the actual density of excited particles, 0b  a constant, ~ 6x   and 
SB

pn  the excited 

state population density value obtained through the so-called Saha-Boltzmann relation, which 

corresponds to a LTE collisional ionization-recombination balance 
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In Eq. (3), pg  and g  are the statistical weight of level p and that of the ion in the ground level, 

respectively, em  is the electron mass, pE   the ionization energy from level p and en  the 

electron density. Eq.(2) points out that for high values of p , the relation  / 1SB

p p p
n n


 is 

fulfilled, i.e., the population density of upper excited atomic states follows a LTE relation 

defined by the electron kinetic temperature. Also, using Eq.(3), the ratio between the 

populations of two upper excited levels, p  and 'p  is 
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i.e., the Boltzmann LTE relation between levels at temperature eT . Although Fujimoto and van 

der Mullen found this result assuming a Maxwellian electron distribution function (EDF), 

similar results have been obtained in situations where the EDFs were far from the Maxwellian 

functional form. In reference [11], the homogeneous Boltzmann equation for the free electrons 

was solved using the two terms Legendre expansion approximation [8], finding again Eq. (2) 

with x  between 5.5 and 6.5.  
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From an experimental point of view, there are numerous evidences of the abovementioned 

ionization-recombination balance with free electrons, mostly thanks to optical emission 

spectroscopy data collected from radiative decays of upper excited states of neutral particles in 

plasmas produced at the laboratory: in reference [12], for instance, a microwave argon discharge 

at atmospheric pressure was analyzed finding that the relation   / 1SB

p pn n  holds when 

3p  . Also, in reference [13] the thermal inequilibrium of a non-thermal, atmospheric helium 

microwave plasma was studied through optical emission spectroscopy, obtaining that the 

population density of neutral particles excited states also followed Eq.(2) with 
4

0 ~ 10b  and 

~ 6 7x  . Thus, Eqs. (3-4) were fulfilled for higher-lying excited levels (i.e., 7p  ). This also 

agrees with reference [14], where a helium plasma jet was studied, and where it is concluded 

that an ionization/recombination balance between free electrons and upper excited states was 

established. Moreover, a non-thermal plasma of mercury is analyzed in reference [15], finding 

that the population density of the excited states above the level 63D3 fulfills the relation 

 / 1SB

p pn n . These are results from some selected papers in the literature, but there are 

numerous evidences of this behavior in many situations (see for instance refs. [12-17] and 

references therein). The existence of this balance is explained by considering the high 

interaction rate between free electrons and higher-lying excited states, caused by the low energy 

threshold for electron-induced collisional ionization/recombination processes [18]. Lower-

bounded excited levels, on the other hand, deviate from this balance because direct electron-

induced ionization processes do not dominate over other radiative, diffusive or excitation 

processes. 

The experimental evidence described above poses different fundamental questions on the 

behavior of cold plasmas, and particularly: 

I. How a system out of equilibrium (free electrons) may impose a typical LTE balance 

over higher lying excited levels of neutral particles?, and 
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II. Why is such LTE balance governed by the electron kinetic temperature?.  

Indeed, the existence of a Saha-Boltzmann balance between excited levels by means of the 

electron kinetic temperature, Eqs (3-4), for so many different cold plasmas, with different 

chemical composition and when electrons are out of equilibrium, strongly suggest that this 

balance emerges thanks to a general thermodynamic principle valid for equilibrium and non-

equilibrium systems.  The concept of thermodynamic quantities for non-LTE systems has been 

widely discussed in the literature in many situations [19-21], and is still an open problem of the 

outmost relevance for general systems far from equilibrium [22]. In this letter we develop a 

theory to study the interaction of free electrons with other systems through the definition of 

entropy given by the Boltzmann H-theorem. Our theory successfully explains why the Saha-

Boltzmann relation still holds when electrons are out of equilibrium, and introduces new 

quantities, such as the thermodynamic temperature or thermodynamic chemical potential, that 

help describe the non-equilibrium free electrons in a general out of equilibrium framework. 

We call ( , , | )F t r v   the electron distribution function, where t  represents time, r  the position 

vector, v  the velocity vector and  1 2, ,    the set of parameters that determine the 

shape of the EDF (for instance, the local value of the electric field, electron density, ionization 

degree, etc.). We introduce the entropy of the free electrons, eS ,  as  

   3 3

0| ( , , | ) ln ( , , | )e B eS t k d r d v F t r v F t r v N s      , (5) 

where eN  is the number of electrons. This quantity is known to fulfill all the requirements for 

an entropy whenever the Boltzmann equation is applicable ( eS  is additive for several systems, 

it monotonically increases in time and yields well-known equilibrium relations). In order to 

simplify our calculations we assume a steady-state situation and a homogeneous distribution of 

electrons: ( , , | ) ( | )eF t r v n f v  , with ( | )f v   the velocity EDF normalized as 

3 ( | ) 1d v f v   , and 
3

e ed r n N . In this way, Eq.(5) turns into  
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with eV  the volume of the electron system and 
3( ) ( | )ln ( | )s d v f v f v    . Due to the 

relevance of s  in our theory, we have called it CAP-entropy in this letter. The energy of the 

electrons, eU , is introduced as 
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where 
3 21

( | )
2

ed v m v f v    is the abovementioned electron mean kinetic energy. Given 

Eqs. (6-7), and following ref. [20], we introduce the thermodynamic quantities for the electron 

system as an extension of the Gibbs relation: 
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with 
th

eT  being the thermodynamic electron temperature, 
th

ep  the electron thermodynamic 

pressure and 
th

e the electron thermodynamic chemical potential. Using Eqs. (6-8) and making 

the derivatives of the entropy with respect to eU  we find 
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and calculating the derivative of the entropy with respect to eV ,  
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which is the free electrons equation of state. However, given the relation between internal 

energy and kinetic energy of the electrons in Eq.(7), we expect that the condition 
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 
,

/ 1
e

e e N
n s n


    is always fulfilled in practical cases. Finally, the partial derivative of eS  

with respect to eN  obtains the well-known Euler relation for extensive and intensive quantities 

     / / /th th th th th

e e e e e e e e eS U T p V T N T    which, taking into account Eq. (8), results in the 

well-known Gibbs-Duhem relation [23]  
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The definition of electron temperature through the CAP-entropy in Eq. (9) clearly differs with 

that in Eq. (1), and in general, different values are expected. However, there are cases where 

both definitions of electron temperature yield same value: for instance, if ( | )f v   only 

depends on the velocity modulus, v , and there is a system parameter, 1 , through which 

( | )f v   can be written as  

 
3

1 2

1

( | ) |
v

f v g  


  
  

 
 , (12) 

it is found that 
th

e eT T (in appendix A we show an original demonstration of this statement). 

Remarkably, the form of the EDF in Eq. (12) is widely employed in the description of the free 

electron population in non-thermal plasmas: for instance, the Maxwellian or the Druyvestein 

EDFs, as well as other fitting expressions employed in the literature for laboratory plasmas [24]. 

Furthermore, the well-known Kappa distribution [25], widely used in space plasmas, also 

possesses same mathematical form. Therefore, in all these cases, the relation 
th

e eT T  holds.  

In general, the EDF does not have the form given in Eq. (12). In order to check the relation 

between both temperatures in a more general context, we have solved the homogeneous steady-

state Boltzmann equation in the two terms Legendre expansion approximation [8] using the 

software BOLSIG [26-27]. This software is well-accepted and tested in the literature for non-
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thermal plasmas produced at the laboratory, and has been successfully applied in many cases for 

non-magnetized plasmas (see for instance [27-29]). If electron-electron interactions are 

considered, the input quantities in BOLSIG are  / , , /eE N N n N  , where E  is the value 

of the effective local electric field and N  the density of neutral particles. Here, we have to 

point out that, strictly speaking, regular collisional-radiative models require a self-consistent 

coupling of the Boltzmann equation with a kinetic model, and therefore, the particular values of 

E , N   and en  would be imposed in each problem based on the value of different input 

experimentally controllable quantities (e.g., external electromagnetic field, condition of the 

gases, geometrical parameters, etc.). We have systematically solved the software BOLSIG in 

nearly 20000 conditions for plasmas with different chemical compositions and values of E , N   

and en . However, since the electron-electron term only considers the isotropic component of 

the EDF [27,30,31], we have neglected the anisotropic contribution in our calculation for 

consistency. Furthermore, the relation between /E N  and   is univocally defined for given 

values of N  and /en N , thus, for clarity purposes, we present the results as a function of N , 

/en N  and  . In figures 1a-1e, we show the typical shape of some EDFs calculated to the 

zeroth order in the Legendre expansion for Ar, He, N2, O2 and H2 plasmas: the base conditions 

correspond to a plasma with 4 eV  ,  a density of neutrals of 
20 32.4 10N m   (typical 

value for a pressure of 1 Pa  at room temperature) and an ionization degree of 
4/ 10en N  , 

which is depicted with a solid line. The rest of the EDFs were calculated by varying one 

parameter at a time. Figures 1a-e illustrate that the shapes of the EDFs are clearly far from the 

Maxwellian profile in most of the cases (note that the Maxwellian profile is a straight line in the 

chosen representation), being the particular dependence of the EDF on the input parameters 

explained elsewhere [27]. In figures 1f-j we present the value of s  as a function of   for the 

five chemical compositions of the plasmas under study (Ar, He, N2, O2 and H2), and for given 

values of N  and /en N : three different neutral particles densities 
20 32.4 10N m   (typical 
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for a gas pressure of 1Pa  at room temperature), 
22 33.2 10N m   (typical for a gas pressure 

of 1 133Torr Pa  at room temperature), and 
24 33.2 10N m  (typical for a gas pressure of 

4100 1.3 10Torr Pa   at room temperature), ionization degrees ranging from 
2/ 10en N   to 

5/ 10en N  , and values of   ranging from 0.3 eV to 55 eV (except in the case of Helium, 

where we only found convergence of the BOLSIG calculations up to 11eV  ). We 

constrained our study within these ranges in order to have typical values in non-thermal plasmas 

produced at the laboratory and typical astronomical plasmas. It is worthy to mention that, 

strictly speaking, the EDF of molecular gases must be calculated by considering the vibrational 

distribution function of the ground state of the molecules, as well as any possible dissociation 

mechanism [32-33], processes that BOLSIG does not take into account. Therefore, our results 

may include some inaccuracies due to these facts. First remarkable result is the very weak 

dependence between s  and en  for a given value of  : in all the studied conditions, the 

quantity  
,

/
e

e e V
n s n


   in Eq. (10) is always below 

210
 and, as expected  

 1
th

e

th

e B e

p

n k T
 . (13) 

Second remarkable result is the general trend obtained between s  and  , as it accurately 

follows the relation 
0

3
ln

2
s s    in all the studied conditions. Hence, using Eqs. (1) and (9) 

we obtain 

 
th

e eT T  . (14) 

This indicates that definitions as different as that of eT , connected to the mean kinetic energy of 

free electrons, and that of 
th

eT , linked to the relation between entropy and energy, yield same 

values in typical conditions. Making use of Eqs. (7), (11), (13) and (14), we find 
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which can be integrated as  

 
(0) 3

ln ln
2

th

e e B e e B e ek T T k T n    ,  (15) 

i.e., the thermodynamic chemical potential of the free electrons has the same form as that of an 

ideal gas (within the limits of the kinetic theory of gases). Thus, following a parallel deduction 

to that in ref. [34] (where free electrons are treated as an ideal gas at a temperature equal to the 

kinetic temperature) the ionization-recombination balance pX e X e e   ,  associated to 

a maximum of entropy between electrons, neutrals and ions, yields the relation  

 0
th

pe

e g gT T T

    , (16) 

 where p  is the chemical potential of neutral particles in the excited state p , gT  the gas 

temperature and   the chemical potential of the ion (we have assumed that they are at LTE 

and with temperature gT ). In this way, as it was demonstrated in ref. [34], eq.(16)  together with 

Eq.(15) yields the Saha-Boltzmann equation, Eq. (3), and the Boltzmann balance, Eq.(4).  

Summarizing, we have obtained the following results: 

i)  the electron thermodynamic temperature is equal to the electron kinetic temperature 

under the usual conditions in cold plasmas.  

ii) In these conditions, free electrons are well described by a thermodynamic chemical 

potential with same mathematical form as that of an ideal gas at the electron kinetic 

temperature, Eq. (15). 
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iii)  A maximum of entropy governing the ionization-recombination balance, 

pX e X e e   , implies Eq.(16), and therefore the Saha-Boltzmann balance in 

Eq. (3) and the Boltzmann relation among levels, Eq.(4). 

 The three results above explain the numerous evidences on the existence of higher lying excited 

states in cold plasmas that follow the Boltzmann distribution according to the electron kinetic 

temperature, even when free electrons are out of equilibrium. Of course, when ions or other 

species play a significant role in the ionization mechanisms of the higher-lying excited states in 

the plasma, the ionization-recombination balance with free electrons may be disrupted. Indeed, 

in this letter we have not analyzed why such balance emerges, but rather the validity of eqs.(3-4) 

when this balance is induced by out of equilibrium electrons. Finally, we want to stress that, 

although we have deduced our theory for global systems, it can also be extrapolated to local 

behaviors. 

In this letter we have developed a framework to describe the out of equilibrium free electrons in 

cold plasmas that has explained the validity of the Saha-Boltzmann balance among higher-lying 

excited states by means of the electron kinetic temperature. Moreover, in the course of this 

investigation, a set of new thermodynamic quantities have been introduced that define the out of 

equilibrium free electrons and their properties when their interaction with another system is 

governed by a maximum of entropy. 
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APENDIX A: Demonstration that 
th

e eT T when 
3

1 1 2( | ) ( / | )f v g v     

 

When 
3

1 1 2( | ) ( / | )f v g v    , the mean kinetic energy is found to be 
2

1  , so 

( | )f v   can be rewritten as 
3/2

2( | ) '( / | )f v g v     and the relation 
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is fulfilled. Using Eq. (9), the thermodynamic temperature is calculated as 
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where we have employed the normalization condition 
3 1d v f  . Using Eq. (A.1) and (A.2) 

we calculate 

     

 

3 3 3

3 3

2

0 0

3

ln1 1 2 2
ln ln

2

2
lim ln

th

B e

v

fv fv v f f f
d v f dv f dv v

k T v v v v v

v f f

 

  





 



    
     

     



  

 
 

3

2 3

0

2 6
3 lim

v

fv
dv fv fv

v

 

 





 
   

  


2 3

0 0

6 3

2

3 1
,

2 B e

dvv f d v f

k T



 



 

  

 

 

where we have employed that the EDF is well defined and therefore  3lim ln 0
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Figure Caption 
 

Figure 1.- Shape of some calculated EDFs for a) Ar, b) He, c) N2 , d) O2 and e) H2 plasmas: the 

base condition corresponds to a mean kinetic energy of 4 eV  ,  a density of neutrals of 

20 32.4 10N m   (typical value for a pressure of 1 Pa  at room temperature) and an 

ionization degree of 
4/ 10en N  , which is depicted with a solid line. The rest of the EDFs 

were calculated by varying a single parameter. Note that the Maxwellian (equilibrium) profile 

should be depicted as a straight line in the chosen representation. In figures 1f-j we present the 

value of s  as a function of  , for given values of N  and /en N  and for f) Ar, g) He, h) N2 , i) 

O2 and f) H2 plasmas. We present results for three different neutral particles densities 

20 32.4 10N m   (typical for a gas pressure of 1Pa  at room temperature), 

22 33.2 10N m   (typical for a gas pressure of 1 133Torr Pa  at room temperature), and 

24 33.2 10N m  (typical for a gas pressure of 
4100 1.3 10Torr Pa   at room temperature), 

for ionization degrees ranging from 
2/ 10en N   to 

5/ 10en N  , and values of   ranging 

from 0.3 eV to 55 eV for all the cases, except for He for which we only found convergence of 

the calculations up to 11eV  . 
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