The Rho Exchange Factors Vav2 and Vav3 Favor Skin Tumor Initiation and Promotion by Engaging Extracellular Signaling Loops

Mauricio Menacho-Márquez1,2, Ramón García-Escudero3, Virginia Ojeda1,2, Antonio Abad1,2, Pilar Delgado4, Clotilde Costa3, Sergio Ruiz1,2, Balbino Alarcón4, Jesús M. Paramio3, Xosé R. Bustelo1,2*

1 Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, Salamanca, Spain, 2 Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, Salamanca, Spain, 3 Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain, 4 Centro de Biología Molecular “Severo Ochoa,” CSIC–Madrid Autonomous University, Madrid, Spain

Abstract

The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.

Introduction

Rho guanine nucleotide exchange factors (Rho GEFs) promote the transition of Rho family GTP hydrolases (GTPases) from the inactive (GDP bound) to the active (GTP bound) state during signal transduction [1,2]. These enzymes can be subdivided into the Dbl-homology (DH) and the Dedicator of Cytokinesis (Dock) families based on the catalytic domain utilized for the GDP/GTP exchange reaction. A common feature of these two families is their extreme diversity because, in mammals, they are composed of 54 and 11 members, respectively. These family members vary widely in terms of catalytic specificity, presence of regulatory and effector domains, mechanism of activation, and expression patterns. As a consequence, they are key elements to adapt the activation of Rho GTPases to specific cell types, membrane receptors, or subcellular localizations [1,2]. Rho GEFs have been traditionally regarded as important for tumorigenesis and, thereby, as potential drug targets [3]. However, the large number of Rho GEFs and their regulatory complexity have made it difficult to identify which ones were the most important for the development and/or progression of specific tumors. Inferences from sequencing data have not been useful in this case, because their genes seldom undergo mutations in cancer cells [3]. The use of animal models in this functional context has been also rather limited. However, the few studies available do support the idea that these enzymes have pro-tumorigenic functions. Thus, the T-
Author Summary

GDP/GTP exchange factors (GEFs) involved in Rho GTPase activation have been traditionally considered as potential anticancer drug targets. However, little is known about the best GEFs to inhibit in different tumor types, the pro-tumorigenic programs that they regulate, and the collateral effects that inactivation may induce in healthy tissues. Here, we investigate this issue in HRas-dependent skin tumors using genetic techniques. Despite the large number of Rho GEFs present in both normal and tumoral epidermis, we demonstrate that the co-expression of the exchange factors Vav2 and Vav3 is critical for the development of this tumor type. We also identify a previously unknown Vav-dependent autocrine/paracrine program that favors keratinocyte survival/proliferation and the formation of an inflammatory state during the initiation and promotion phases of this tumor. Finally, our results indicate that inactivation of Vav proteins is innocuous for the homeostasis of normal epidermis. Taken together, these results imply that Vav protein-based therapies may be of interest for skin tumor prevention and/or treatment.

cell lymphoma invasion and metastasis-inducing protein 1 (Tiam1, ID number: 21844) has been shown to be important for both cutaneous squamous and colorectal [4,5] tumors. The adenomaous polyposis coli-stimulated exchange factor 1 (Asef1, ID number: 226970) and Asef2 (ID number: 219140) proteins have been linked to colorectal cancer [6]. Finally, Vav3 (ID number: 57257) and phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex1, ID number: 277360) are involved in the development of p190Bcr/Abl-driven acute lymphoblastic leukemia and melanoma, respectively [7,8].

Vav proteins exemplify well the complexity existing in the large Rho GEF family. Thus, this subfamily has three members in vertebrates (Vav1 [ID number: 22324], Vav2 [ID number: 22325], Vav3) that display overlapping but not identical expression patterns. They all share similar structures that encompass a complex array of regulatory, catalytic, and protein–protein interaction domains [9]. These domains enable them to interact with and become activated by receptors with either intrinsic or associated tyrosine kinase activity, activate GDP/GTP exchange on Rho GTPases, and in addition, engage parallel routes in GTPase-independent manners [9–17]. The physiological role of Vav proteins in the immune, nervous, and cardiovascular systems are now well established thanks to the use of genetically engineered mice [9,18–25]. By contrast, the genetic analysis of the role of these proteins in cancer has been restricted so far to acute lymphoblastic leukemia and polyomavirus middle T-antigen-induced breast cancer. These studies have revealed that Vav3 and Vav2 plus Vav3 were required for the development of each of those tumors, respectively [7,17].

In the present work, we aimed at expanding the spectrum of Vav family-dependent tumors by focusing our attention on cutaneous squamous tumors (CSTs), the second most frequent type of skin cancer worldwide [26]. To this end, we decided to use Vav family knockout mice to evaluate the role of these proteins in the development of 7,12-dimethylben[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)- and DMBA/DMBA-triggered skin tumors. In the former model, a single topic administration of DMBA induces oncogenic mutations (Q61L) in the HRas locus (ID number: 15461) in a small pool of keratinocytes (initiation phase). Subsequent serial topical applications of TPA are then applied to expand this pool of transformed keratinocytes to generate papillomas (promotion phase) and, depending on the genetic background of mice, cutaneous squamous cell carcinomas (cSCCs) (progression phase). Such pro-tumorigenic effect is mediated by the stimulation of intracellular signaling cascades in the initiated keratinocytes and, in addition, through autocrine/paracrine-based crosstalk between cancer and tumor-associated stromal cells that ultimately favor the expansion of the initial pool of transformed keratinocytes [27–30]. The latter model uses serial topical applications of DMBA that increase the frequency of cSCC development at the end of the carcinogenic protocol. We selected these models for our experiments because: (i) they are known to be Rac1- (ID number: 19353) and Tiam1-dependent [4,31]; (ii) high levels of two Vav family proteins and a large number of additional Rho GEFs are present in normal and tumoral skin (see Figure S1), thus making a perfect working model to address intra-GEF family redundancies in a tumorigenic context; and (iii) they are compatible with the analysis of the role of the proteins under study in the tumor initiation, promotion, and progression phases [28]. Using this strategy, we have unveiled a Vav2/Vav3-dependent and cancer-specific autocrine/paracrine program that contributes to the initiation and promotion phases of skin tumors.

Results

Vav2 and Vav3 Proteins Are Essential for Skin Tumorigenesis

Expression analyses indicated that mouse papillomas and cSCCs expressed large numbers of Rho GEFs, including Vav2 and Vav3 (Figure S1). To assess if these two Vav family proteins played nonredundant roles with other Rho GEFs in the skin, we used compound Vav2^{−/−};Vav3^{−/−} mice to evaluate the impact of the systemic inactivation of these two proteins in both epidermal maintenance and tumorigenesis. Unlike the case of Rac1^{−/−} mice [32–34], we could not find any defect in skin development, histological structure, or self-renewal in those mice regardless of the genetic background used (Figure S2 and unpublished data). Wild-type-like parameters were also found in triple Vav2^{−/−};Vav3^{−/−};Vav5^{−/−} C57BL/10 mice, indicating that the lack of an epidermal phenotype was not due to functional compensation events by Vav1 (unpublished data). Hence, other Rho/Rac GEFs must be in charge of stimulating Rac1 in skin stem cells and keratinocytes under physiological conditions. By contrast, we observed that Vav2^{−/−};Vav3^{−/−} FVB mice displayed lower kinetics of tumor development (Figure 1A), a 5-fold reduction in the total number of tumors developed per mouse (Figure 1B,C), and 10-fold lower levels of carcinoma in situ (Table S1) when subjected to the two-step DMBA/TPA carcinogenic method. This effect was independent of the mouse genetic background, because C57BL/10 Vav2^{−/−};Vav3^{−/−} mice also showed statistically significant reductions in tumor burden when compared to control animals (Figure 1D–F). Vav2^{−/−};Vav3^{−/−} FVB mice also displayed lower kinetics of tumor development (Figure 1G), a 2-fold reduction in tumor burden per mouse (Figure 1H,I), and a decrease in the percentage of cSCC development (Table S2) when subjected to the complete DMBA/DMBA tumorigenic method. Taken together, these results indicate that Vav2 and Vav3 play important roles in CST development but not in normal epithelial development and homeostasis.

Vav Proteins Are Important for the Initiation Phase of Skin Tumorigenesis

The lower tumor burden observed in DMBA/DMBA-treated Vav2^{−/−};Vav3^{−/−} mice indicated that Vav proteins may have...
direct roles during the initiation phase of CSTs. To investigate this possibility, we analyzed the short-term response of the epidermis of wild type and Vav2−/−;Vav3−/− mice to DMBA (Figure 2A). Using immunostaining with antibodies to the cleaved fragment of caspase 3, we observed that DMBA induced 2-fold higher apoptotic cell numbers in the epidermis of Vav2−/−;Vav3−/− mice than in controls (Figure 2B,C). This was not due to enhanced absorption and/or metabolization of the carcinogen, because immunohistochemistry experiments with antibodies to phospho-histone H2AX (ID number: 15270) indicated that the DMBA treatment triggered similar levels of DNA double-strand breaks in mice of both genotypes (Figure 2D,E). We also found that primary Vav2−/−;Vav3−/− keratinocytes were more susceptible to programmed cell death upon DMBA treatment or serum starvation in tissue culture, suggesting that the defects detected in vivo were keratinocyte autonomous (Figure 2F). This was a stimulus-dependent defect, because wild-type and mutant keratinocytes displayed similar cell death rates when challenged with other pro-

Figure 1. Expression of Vav2 and Vav3 is important for CST development. (A, B) Incidence (A) and number (B) of tumors in DMBA/TPA-treated FVB mice of indicated genotypes. The differences in tumor incidence up to week 10 (A) and in tumor number (B) were statistically significant ($p \leq 0.001$, $n = 15$ animals per genotype in each experiment). (C) Example of animals subjected to the above treatments for 16 wk. (D, E) Incidence (D) and number (E) of tumors in DMBA/TPA-treated C57BL/10 mice of indicated genotypes. The differences in tumor incidence up to week 15 (D) and in tumor number (E) were statistically significant ($p \leq 0.001$, $n = 15$ animals per genotype in each experiment). (F) Example of C57BL/10 mice of the indicated genotypes that were subjected to the above treatment for 16 wk. (G, H) Incidence (G) and number (H) of tumors in DMBA/DMBA-treated FVB mice of indicated genotypes. The differences in tumor incidence up to week 13 (G) and in tumor number (H) were statistically significant ($p \leq 0.001$, $n = 15$ animals per genotype in each experiment). (I) Example of animals subjected to the above treatments for 16 wk. doi:10.1371/journal.pbio.1001615.g001
Figure 2. Vav proteins participate in the initiation phase of skin tumors. (A) Scheme of these experiments. (B, C) Example (B; scale bar, 100 μm) and quantification (C) of apoptotic cells found in the epidermis of mice of the indicated genotypes 24 h upon the application of DMBA.
apoptotic agents such as radiomimetic (bleomycin) and endoplastic reticulum stress-inducing (dithiothreitol) drugs (Figure 2F). The ectopic expression of either HA-tagged Vav2 or Myc-tagged Vav3, but not of the control green fluorescent protein (GFP, ID number: P12212), restored wild-type-like apoptotic rates in both DMBA-treated and serum-starved Vav2−/−;Vav3−/− keratinocytes (Figure 2G,H), further indicating that this survival defect was a direct effect of the Vav2;Vav3 gene deficiency in keratinocytes.

Vav Proteins Are Important for the Promotion Phase of Skin Tumorigenesis

We hypothesized that Vav proteins could be also involved in the TPA-dependent promotion phase of skin tumors, an idea consistent with our prior observations indicating that the effect of the double Vav2;Vav3 gene deficiency in the reduction of tumor burden was significantly more conspicuous in DMBA/TPA- than in DMBA/DMBA-treated mice (Figure 1; compare panels B and H). To investigate this possibility, we evaluated the short-term proliferative and inflammatory reaction induced by TPA in the skin of control and Vav2−/−;Vav3−/− mice (Figure 3A). The TPA-induced proliferative response of the epidemis was severely attenuated in the absence of these two proteins, as demonstrated by the limited hyperplasia (Figure 3B,C) and the low levels of BrdU incorporation into keratinocytes (Figure 3D) detected in the epidermal layers of TPA-treated Vav2−/−;Vav3−/− mice. In vivo BrdU pulse-chase experiments indicated that those proliferative defects were associated with delayed kinetics and a reduced efficiency in the G1/S phase transition induced by TPA in the mutant keratinocytes (Figure 3E). Consistent with this, immunoblot analyses using total cellular extracts obtained from the epidermis of TPA-treated mice showed that the activation (extracellular regulated kinase, [Erk, ID numbers: 26417, 26413], signal transduction and activator of transcription 3 [Stat3, ID number: 20848]) or abundance (cyclin E, ID number: 12447) of proteins involved in such cell cycle transition did not take place efficiently in Vav2−/−;Vav3−/− mice (Figure 3F). Furthermore, we observed that the dermis of these animals did not show any sign of neutrophil infiltration (Figure 3G,H) or edema-associated thickening (Figure 3G,I), indicating that the inflammatory response that takes places during the tumor promotion phase is totally abated in the absence of Vav proteins.

The lack of an inflammatory response led us to explore the potential contribution of Vav2−/−;Vav3−/− inflammatory cells to the proliferative defects found in the epidermis of Vav2−/−;Vav3−/− mice. We observed that such defects still persisted in Vav2−/−;Vav3−/− C57BL/10 mice carrying a wild-type C57BL/6-Ly5.1 hematopoietic system (Figure 4A-C), ruling out the possibility that the defective proliferation of the epidermis of the knockout animals could be an indirect consequence of dysfunctional hematopoietic cells. In agreement with those results, we also found that the grafting of Vav2−/−;Vav3−/− C57BL/10 bone marrow cells into lethally irradiated wild-type C57BL/6-Ly5.1 mice did not have any detectable effect on the responsiveness of the epidermis of host animals to TPA (Figure 4D-F).

Vav Proteins Regulate a Mitogenic, Protein Kinase C/Fyn-Dependent Route in Keratinocytes

To further assess the keratinocyte autonomous nature of the proliferative defects found in the epidermis of Vav2−/−;Vav3−/− mice, we evaluated the proliferative response of wild-type and Vav2;Vav3-deficient primary keratinocytes to TPA in cell culture. In agreement with the in vivo data, we observed that quiescent Vav2−/−;Vav3−/− keratinocytes incorporated less efficiently the [3H] thymidine marker (ThdU) than their wild-type counterparts upon TPA stimulation (Figure 5A). This was a TPA-specific defect, because Vav2−/−;Vav3−/− keratinocytes showed normal cell cycle progression when stimulated with complete growth media (Figure 5A). Western blot and GTPase-linked immunosorbent (G-LISA) assays revealed that the Vav2;Vav3 gene deficiency was associated to reduced amounts of activation of Erk (Figure 5B, upper panel), Stat3 (Figure 5B, third panel from top), and Rac1 (Figure 5C, upper panel) in TPA-stimulated cells. It also reduced the basal levels of RhoA (ID number: 11848) activation in nonstimulated cells and, in addition, eliminated the inactivation of RhoA that was typically observed in TPA-stimulated wild-type keratinocytes (Figure 5C, lower panel). Normal levels of Erk and Rac1 activation were observed upon overexpression of HA-tagged Vav2 (Figure 3A, C) or Myc-tagged Vav3 in Vav2;Vav3-deficient keratinocytes (Figure 3B,C), thus confirming that those defects were directly due to the Vav2;Vav3 gene deficiency. Furthermore, and consistent with the TPA-specific deficiency of the cell cycle transitions, we observed that those signaling responses were normal when Vav2−/−;Vav3−/− keratinocytes were stimulated with either serum or synthetic CnT7 media (Figure 5D,E).

We surmised that a tyrosine kinase had to be involved in this process, because Vav proteins cannot be activated by direct TPA/diacylglycerol binding or protein kinase C (PKC)-mediated serine/threonine phosphorylation [9,35]. In agreement with this idea, we observed that TPA triggered the tyrosine phosphorylation of both endogenous and ectopically expressed Vav2 in keratinocytes (Figure 5F). This phosphorylation was blocked when cells were pre-incubated with either general PKC (GF109203X) or Src family (PP2) inhibitors (Figure 5F) prior to the TPA stimulation step. An inactive PP2 analog (PP3) did not have such inhibitory effect on Vav2 tyrosine phosphorylation (Figure 5F). Similar results were obtained with the TPA-mediated stimulation of Erk route (Figure 5G). Although many PKC family members are present in keratinocytes (Figure 5A), we believe that a classical PKC (cPKC) must be involved, because we could reproduce the lack of Rac1 activation typically seen in Vav2−/−;Vav3−/− keratinocytes when we incubated the wild-type counterparts with Go6976 (Figure 5H), a cPKC-specific inhibitor that does not inactivate PKGs belonging to the novel or atypical subclasses [36]. A similar effect was observed when Fyn (ID number: 14360) was knocked down in wild-type cells using short hairpin RNA (shRNA) techniques (Figures 5H and S4B), indicating that this kinase was the Src family member preferentially involved in this signaling response. This is consistent with previous results reporting the
Figure 3. Vav proteins play pleiotropic roles during the skin tumor promotion phase. (A) Scheme of the experiments made in this section. (B–D) Example of immunofluorescence experiments (B; scale bar, 100 μm) and quantification of the hyperplasia (C, green color cells) and number of BrdU+ keratinocytes (D) in the epidermis of TPA-treated mice of indicated genotypes (n = 6). In (B), sections were stained with antibodies to keratin 14 (ID number: 16664), DAPI, and rhodamine-phalloidin to reveal K14 (green color), cell nuclei (blue color), and F-actin (red color), respectively. TPA-1 role of Vav Proteins in HRas-Dependent Skin Tumors
TPA-mediated stimulation of this kinase in mouse keratinocytes [37]. These results indicate that Vav proteins act downstream of a cPKC/Fyn signaling route that mediates the pro-mitogenic effects of TPA in keratinocytes.

Vav Proteins Promote a Large Transcripontal Program During the Promotion Phase of Skin Tumors

We next considered the possibility that Vav proteins could control, in addition to the intrinsic signaling programs of keratinocytes described above, the stimulation of long-range autocrine/paracrine programs in the skin. This idea was consistent with the long-term defects seen in the activation/expression of G_{1}/S phase-related signaling proteins in the epidermis of TPA-stimulated Vav2/Vav3-deficient mice (Figure 3F) and, in addition, by the total lack of inflammatory response found in the skin of those mice (Figure 3G–I). To explore this idea, we carried out microarray experiments to identify the fraction of the TPA-induced transcriptome of the skin (epidermis plus dermis) that was Vav-dependent. We found a significant subset of TPA-regulated transcripts whose upregulation (Figure S5A; right panel, A1 cluster; for functional annotation, see Table S3A,B) or repression (Figure S5A; right panel, A2 cluster; for functional annotation, see Table S3C,D) was Vav2/Vav3-dependent. Interestingly, bioinformatics analyses using a skin tumor microarray dataset [38] revealed that most A1 cluster transcripts displayed a similar upregulation in DMBA/TPA-induced papillomas and/or cSCCs when compared to normal skin (Figure S5B, see clusters 2 and 3). Conversely, most A2 cluster mRNAs were expressed in normal skin and down-regulated in papillomas and/or cSCCs (Figure S5B, see clusters 5 and 6). These results indicated that the short-term Vav2/Vav3-dependent gene signature identified in the above microarray experiments is mostly conserved in fully developed tumors.

The functional annotation of the A1 gene cluster revealed a statistically significant enrichment of genes encoding extracellular ligands, including EGF family members (i.e., amphiregulin [Areg, ID number: 11839], tumor growth factor α [TGFα, ID number: 21802], heparin-binding EGF-like growth factor [HB-EGF, ID number: 15200]), hepatocyte growth factor (HGF, ID number: 21802], heparin-binding EGF-like growth factor [Hb-EGF, ID number: 22340], fibroblast growth factor 7 (FGF7, ID number: 14178), and heparin-binding EGF-like growth factor [HbEGF, ID number: 15214], tumor growth factor b [TGFβ1, ID number: 56753]). The A2 cluster consisted of genes encoding extracellular matrix proteins, adhesion molecules, and cytokines that regulate cell migration, proliferation, and survival. This Vav-dependent autocrine/paracrine program was keratinocyte-specific, as it was mostly absent in the recently described Vav-dependent transcriptome of mouse breast cancer cells [17]. Indeed, these two transcriptomes only shared the Vav2/Vav3-dependent extracellular ligands. Defects in the production of HGF and IL6 by Vav2/Vav3-deficient mice were confirmed at the protein level using ELISA determinations in skin and serum samples obtained from TPA-treated animals (Figure S6A) and, in the case of IL6, by carrying out immunohistochemical analyses in skin sections (Figure S6B). The TPA-mediated up-regulation of these Vav-dependent transcripts was abolished in wild-type keratinocytes upon the Fyn mRNA knockdown (Figure S7), indicating that this autocrine/paracrine program is one of the downstream responses triggered by the TPA/cPKC/Fyn/Vav-pro-mitogenic route previously characterized in keratinocytes (see above, Figure 5).

This Vav-dependent autocrine/paracrine program was keratinocyte-specific, since it was mostly absent in the recently described Vav-dependent transcriptome of mouse breast cancer cells [17]. Indeed, these two transcriptomes only shared the Areg, Hbegf, Tgfa, B24 [ID number: 93672], Il23a (ID number: 83430), Osm (ID number: 11413), and Cxcl14 (ID number: 57266) transcripts (Table S4). By contrast, we observed that the majority of the Vav2/Vav3-dependent transcripts previously found to be involved in the lung-specific metastasis of breast cancer cells was also present in the Vav-dependent transcriptome of TPA-stimulated skin (Inha [ID number: 16329], Ptg2 [ID number: 19229], Tdcd [ID number: 50753]; Figure S8) [17]. The only exception was Ilk (integrin-linked kinase, ID number: 16202), which was repressed rather than induced by TPA independently of the expression status of Vav proteins (Figure S8A). This indicates that the Vav-dependent transcriptome contains both cell-type-dependent (i.e., the autocrine/paracrine program) and -independent (i.e., lung metastasis-related genes) subsets.

The Vav Family-Dependent Autocrine/Paracrine Program Regulates Keratinocyte Survival and Proliferation

Given the critical roles that extracellular factors play in both the initiation and promotion phase of skin tumors [29,30], we investigated whether they could be involved in the tumorigenic defects observed in Vav2^{-/-};Vav3^{-/-} keratinocytes. If so, we speculated that the experimental manipulation of the extracellular environment had to rescue wild-type-like responses in them. To this end, we first checked whether the survival defects exhibited by DMBA-treated keratinocytes could be overcome when co-culturing them in the presence of equal numbers of wild-type cells. To distinguish each cell subpopulation in the mixed cultures, one of the subpopulation was labeled with a cell permeable chromophore prior to the co-culturing step. Using annexin V flow cytometry, we found that wild-type cells restored normal survival rates to both DMBA and serum deprivation in the co-cultured Vav2^{-/-};Vav3^{-/-} keratinocytes.

We confirmed by quantitative RT-PCR (qRT-PCR) that Vav proteins were important for the TPA-mediated induction of mRNAs for EGF family ligands, HGF, FGF7, IL6, and IL1β both in vivo (Figure S5C) and in vitro (Figure S5D). The only exception found for the correlation between whole skin and cultured keratinocytes was the Tgfa mRNA, which showed a Vav-dependent expression pattern in TPA-stimulated skin (Figure S5C) but not in isolated primary keratinocytes (Figure S5D). These results suggest that some of the results detected in the skin microarray experiments probably represent secondary waves of transcriptional activation set in place upon the engagement of other Vav2/Vav3-dependent extracellular ligands. Defects in the production of HGF and IL6 by Vav2/Vav3-deficient mice were confirmed at the protein level using ELISA determinations in skin and serum samples obtained from TPA-treated animals (Figure S6A) and, in the case of IL6, by carrying out immunohistochemical analyses in skin sections (Figure S6B). The TPA-mediated up-regulation of these Vav-dependent transcripts was abolished in wild-type keratinocytes upon the Fyn mRNA knockdown (Figure S7), indicating that this autocrine/paracrine program is one of the downstream responses triggered by the TPA/cPKC/Fyn/Vav-pro-mitogenic route previously characterized in keratinocytes (see above, Figure 5).
Figure 4. The defective proliferation of the epidermis of Vav2−/−;Vav3−/− mice is not due to a defective hematopoietic system. (A) Scheme of the bone marrow reconstitution experiments used to generate data in panels (B) and (C). BM, bone marrow. (B, C) Example (B; scale bar, K14 / DAPI / F-actin).
keratinocytes (Figure 6A). A similar protective effect was found when we included, without wild-type cells, ligands for transmembrane tyrosine kinase receptors (epidermal growth factor [EGF], ID number: 13643], TGFα, HGF, FGF7) in the culture media of Vav2−/−;Vav3−/− keratinocytes (Figure 6B). By contrast, the addition of IL6 protected wild type but not Vav2−/−;Vav3−/− keratinocytes in the same type of experiments (Figure 6B).

The cell cycle defects shown by those cells under TPA-stimulation conditions were also eliminated when the serum-free media was supplemented with either transmembrane tyrosine kinase receptor ligands or IL1β (Figure 6C). However, as in the apoptotic assays, we observed that IL6 could induce cell cycle entry in wild-type but not in Vav-deficient keratinocytes (Figure 6C). This lack of responsiveness was not due to abnormal expression of any of the two IL6 receptor (IL6-R) subunits (Figure S9), indicating that Vav2;Vav3-deficient keratinocytes have, in addition to the general defect in the generation of the autocrine/paracrine program, a specific signaling defect downstream of the IL6-R. Consistent with this idea, immunoblot analyses indicated that EGF (Figure 6D), but not IL6 (Figure 6E), could trigger proper phosphorylation of Erk and Stat3 in Vav2−/−;Vav3−/− keratinocytes. This was a direct consequence of the Vav2;Vav3 gene deficiency, because we could restore normal phosphorylation levels of Erk and Stat3 downstream of the IL6-R upon the re-expression of either HA-tagged Vav2 (Figure 6F) or Myc-tagged Vav3 (Figure 6G) in Vav2−/−;Vav3−/− cells. The implication of Vav proteins in the signaling of the IL6-R was further demonstrated by the observation that IL6 triggered tyrosine phosphorylation of endogenous Vav2 in wild-type keratinocytes (Figure 6H).

The Vav Family-Dependent Autocrine/Paracrine Program Is Involved in the Promotion Phase of Skin Tumorigenesis

To further evaluate the relevance of the Vav-dependent autocrine/paracrine program, we investigated whether the intradermal injection of mitogens could eliminate the proliferative and inflammatory defects seen in the skin of TPA-treated Vav2−/−;Vav3−/− mice. We observed that the injection of EGF, TGFα, or FGF7 induced similar levels of hyperplasia (Figure 7A) and BrdU immunoreactivity (Figure 7B) in the epidermis of wild-type and Vav2;Vav3-deficient mice. The simultaneous application of TPA resulted in a synergistic proliferative response in the epidermis of animals of both genotypes (Figure 7C,D). The intradermal injection of IL6 could trigger a robust, TPA-like mitogenic response in the epidermis of control but not Vav2−/−;Vav3−/− animals (Figure 7A-D), thus recapitulating the signaling defects observed in primary keratinocyte cultures (see above; Figure 6). IL6, but not the other ligands tested, did induce a potent infiltration of neutrophils in the skin of both wild-type and knockout mice (Figure 7E,F). This indicates that, unlike the case of keratinocytes, the IL6-R does not require the presence of Vav2 and Vav3 for proper signaling in myeloid cells. This is not due to functional compensation events from Vav1, because IL6-treated Vav1−/−;Vav2−/−;Vav3−/− mice showed neutrophil infiltration rates similar to both wild-type and Vav2−/−;Vav3−/− animals (Figure 7F, right panel).

Carcinomas from Vav Knockout Mice Show Exacerbated Production of Mitogens

Finally, we investigated whether the tumors that developed in Vav2;Vav3-deficient mice could be the result of the outgrowth of cancer cells that, due to selection events, could have compensated the lack of Vav proteins by the exacerbation of other signaling routes. We suspected that such compensation could occur in this case because the few tumors that developed in mutant mice displayed a high similarity to those found in control animals in terms of size distribution, proliferation rates, and differentiation stage (unpublished data). Based on the above, we decided to compare the abundance of transcripts encoding a variety of mitogenic ligands in papilloma and cSCC samples obtained from FVB mice of both genotypes. In addition, we monitored the expression pattern in those samples of Vav2/Vav3-dependent genes that were common between breast cancer cells and TPA-stimulated keratinocytes [17]. We observed that the Vav2/Vav3-dependent Tgfa, Ilk, Hgf, Fig7, and Il6 transcripts showed reduced abundance in papillomas derived from Vav2/Vav3-deficient mice when compared to the levels present in control mouse tumors (Figure 8A). This reduction, however, was milder than the defect originally seen in the TPA-stimulated skin of Vav3−/− mice (see above, Figure S5C). Other Vav2/Vav3-dependent (Areg, Hmoj, and -dependent [Id number: 12223]) transcripts displayed similar levels in papillomas regardless of the Vav2/Vav3 expression status, further suggesting that the autocrine/paracrine defect was ameliorated in these tumors (Figure 8A). Such compensation event was exacerbated in carcinomas, since we observed a striking up-regulation of the abundance of EGF-R family ligand transcripts in all cSCC samples derived from mutant mice (Figure 8B).

Carcinomas from Vav Knockout Mice Show Exacerbated Production of Mitogens

Finally, we investigated whether the tumors that developed in Vav2;Vav3-deficient mice could be the result of the outgrowth of cancer cells that, due to selection events, could have compensated the lack of Vav proteins by the exacerbation of other signaling routes. We suspected that such compensation could occur in this case because the few tumors that developed in mutant mice displayed a high similarity to those found in control animals in terms of size distribution, proliferation rates, and differentiation stage (unpublished data). Based on the above, we decided to compare the abundance of transcripts encoding a variety of mitogenic ligands in papilloma and cSCC samples obtained from FVB mice of both genotypes. In addition, we monitored the expression pattern in those samples of Vav2/Vav3-dependent genes that were common between breast cancer cells and TPA-stimulated keratinocytes [17]. We observed that the Vav2/Vav3-dependent Tgfa, Ilk, Hgf, Fig7, and Il6 transcripts showed reduced abundance in papillomas derived from Vav2/Vav3-deficient mice when compared to the levels present in control mouse tumors (Figure 8A). This reduction, however, was milder than the defect originally seen in the TPA-stimulated skin of Vav3−/− mice (see above, Figure S5C). Other Vav2/Vav3-dependent (Areg, Hmoj, and -dependent [Id number: 12223]) transcripts displayed similar levels in papillomas regardless of the Vav2/Vav3 expression status, further suggesting that the autocrine/paracrine defect was ameliorated in these tumors (Figure 8A). Such compensation event was exacerbated in carcinomas, since we observed a striking up-regulation of the abundance of EGF-R family ligand transcripts in all cSCC samples derived from mutant mice (Figure 8B).

Carcinomas from Vav Knockout Mice Show Exacerbated Production of Mitogens

Finally, we investigated whether the tumors that developed in Vav2;Vav3-deficient mice could be the result of the outgrowth of cancer cells that, due to selection events, could have compensated the lack of Vav proteins by the exacerbation of other signaling routes. We suspected that such compensation could occur in this case because the few tumors that developed in mutant mice displayed a high similarity to those found in control animals in terms of size distribution, proliferation rates, and differentiation stage (unpublished data). Based on the above, we decided to compare the abundance of transcripts encoding a variety of mitogenic ligands in papilloma and cSCC samples obtained from FVB mice of both genotypes. In addition, we monitored the expression pattern in those samples of Vav2/Vav3-dependent genes that were common between breast cancer cells and TPA-stimulated keratinocytes [17]. We observed that the Vav2/Vav3-dependent Tgfa, Ilk, Hgf, Fig7, and Il6 transcripts showed reduced abundance in papillomas derived from Vav2/Vav3-deficient mice when compared to the levels present in control mouse tumors (Figure 8A). This reduction, however, was milder than the defect originally seen in the TPA-stimulated skin of Vav3−/− mice (see above, Figure S5C). Other Vav2/Vav3-dependent (Areg, Hmoj, and -dependent [Id number: 12223]) transcripts displayed similar levels in papillomas regardless of the Vav2/Vav3 expression status, further suggesting that the autocrine/paracrine defect was ameliorated in these tumors (Figure 8A). Such compensation event was exacerbated in carcinomas, since we observed a striking up-regulation of the abundance of EGF-R family ligand transcripts in all cSCC samples derived from mutant mice (Figure 8B).

Discussion

Our work indicates that Vav2 and Vav3 play first- and second-level signaling roles in keratinocytes that, although mechanistically
Figure 5. Vav-dependent routes in keratinocytes. (A) Quantification by flow cytometry of the number of EdU⁺, S-phase cells induced by the stimulation of quiescent keratinocytes of the indicated genotypes with either TPA or a synthetic keratinocyte growth media (CnT07). (B) Role of Vav Proteins in HRas-Dependent Skin Tumors.
Phosphorylation and expression status of Erk and Stat3 proteins in TPA-stimulated keratinocytes of indicated genotypes. (C) Rac1 (upper panel) and RhoA (lower panel) activation levels induced by the stimulation of quiescent keratinocytes of indicated genotypes with TPA (n = 3). (D) Phosphorylation and expression status of Erk proteins in either serum- (two upper panels) or CNto7-stimulated (two bottom panels) keratinocytes of indicated genotypes. (E) Rac1 activation levels induced by the stimulation of quiescent keratinocytes with either serum (left panel) or CNto7 media (right panel) (n = 3). (F) Immunoprecipitation experiments showing the tyrosine phosphorylation levels of endogenous Vav2 (top panel) and ectopically expressed HA-Vav2 (third panel from top) in wild-type keratinocytes treated with TPA (+) in the absence (−) or the presence (+) of the indicated drugs (n = 2). Due to problems with the detection of the endogenous proteins after blot stripping, the loading control shown in the second panel from top was made using a parallel immunoprecipitation with the same anti-Vav2 antibody. GF, GF109203X; Ip, immunoprecipitation. (G) Western blot of total cellular extracts showing the levels of phosphorylation (top) and expression (bottom) of Erk proteins in wild-type keratinocytes stimulated as indicated in (F) (n = 3). (H) Rac1 activation levels induced by TPA in wild-type keratinocytes under the indicated experimental conditions (n = 3). Go, Go 6976; shFyn, cells infected with a Fyn-specific shRNA.

different, act in a concerted manner to favor the initiation and promotion phases of CSTs (Figure 8E). From a signaling hierarchical point of view, the earliest role of Vav proteins is to work in a CPKC- and Fyn-dependent signaling cascade that leads to the downstream stimulation of Rac1 and optimal phosphorylation kinetics of both Erk and Stat3 (Figure 8E, step 1). This route has a direct impact on the G1/S transition of primary keratinocytes. A more distal endpoint of this Vav-dependent route is the engagement of a wide autocrine/paracrine program that favors keratinocyte survival to DNA damage, epithelial hyperplasia, and the formation of an inflammatory microenvironment (Figure 8E, step 2). This program is composed of extracellular factors (i.e., HGF, FGF7, IL1β) involved in the monovalent regulation of keratinocyte survival and proliferation during the initiation and promotion phases, respectively. In addition, it contains bivalent extracellular factors (i.e., IL6) that regulate keratinocyte mitogenesis and the engagement of inflammatory responses during the tumor promotion phase. Finally, Vav proteins play a second-level, keratinocyte-specific role in the downstream roles of Vav proteins in this autocrine/paracrine signaling route of one of the Vav2/Vav3-dependent extracellular factors, the cytokine IL6 (Figure 8E, step 3). This biological program may play roles in both incoho and fully established tumors, as indicated by the similar regulation of the TPA-induced Vav2/Vav3-dependent gene signature in papillomas and cSCCs obtained from DMBA/TPA-treated mice. By contrast, we have observed that the compound Vav2;Vav3 gene deficiency does not induce any overt dysfunction in normal skin development and homeostasis, indicating that the Vav2/Vav3-dependent route only becomes functionally relevant in the epidermis under conditions that require increased signaling thresholds for the assembly of new, pathophysiological-specific programs. To our knowledge, this is the first demonstration of the implication of Vav proteins, Rho GEFs, or any Rho GTPase in the assembly of such large autocrine/paracrine program in either a physiological or pro-tumorigenic scenario.

Several indications support the idea that the upstream and downstream roles of Vav proteins in this autocrine/paracrine program are critical for the initiation and promotion phase of incoho skin tumors and, probably, for long-term tumor sustenance. Thus, previous reports have shown that many of the Vav2/Vav3-dependent extracellular factors regulated by Vav2 and Vav3 contribute to keratinocyte survival, proliferation, and tumorigenesis [29,30]. Furthermore, we have shown that all the defects detected in cultured Vav2−/−;Vav3−− keratinocytes can be effectively bypassed upon their co-culture with wild-type keratinocytes or, alternatively, upon the addition of specific Vav2/Vav3-dependent ligands (EGF family ligands, HGF, FGF7, IL1β) to their cultures. Similar results were observed when these rescue experiments were carried out in vivo using intradermal injections of those extracellular factors in Vav2−/−; Vav3−− mice. However, and in good agreement with the critical role of Vav proteins downstream of the IL6-R, IL6 could not restore the survival and mitogenic defects of Vav2/Vav3-deficient keratinocytes when used in vitro or in vivo. It is likely that these second-level signaling defects also contribute to the lower tumor burden observed in Vav2−/−;Vav3−− animals, since previous reports have shown that IL6-mediated signaling is essential for skin tumorigenesis [39]. Interestingly, we observed that IL6 did restore the defective inflammatory response observed in the skin of TPA-stimulated Vav2−/−;Vav3−− animals. This result indicates that IL6 is indeed part of the Vav2/Vav3-dependent pro-mitogenic and pro-inflammmatory program of keratinocytes and, in addition, that the critical role of Vav proteins downstream of the IL6-R is keratinocyte-specific. The use of Vav1−−;Vav2−−;Vav3−− mice has ruled out the possibility that the normal chemoattraction of Vav2−/−;Vav3−− neutrophils induced by IL6 could be due to functional compensation events mediated by the hematopoietic-specific Vav1 protein [9]. Thus, these cell-type-specific differences could be due to the presence of other IL6-regulated Rho GEFs in neutrophils (e.g., P-Rex1) [40] or, alternatively, reflect the implication of Vav proteins in a proliferative/survival signaling branch of the IL6-R that is not important for migration and the induction of the pro-inflammatory program. Additional experiments using wild-type and Vav family-deficient neutrophils will be needed to discriminate those possibilities. Finally, the pathophysiological importance of this program during skin tumorigenesis is further highlighted by our in silico analyses indicating that the Vav2/Vav3-dependent transcriptomal signature is conserved in fully developed tumors and, in addition, by the exacerbated up-regulation of most transcripts for those autocrine/paracrine factors consistently seen in cSCCs from Vav2−/−;Vav3−− mice (Figure 8E).

We surmise that these experiments have only revealed the tip of the iceberg of this biological program, because the Vav2/Vav3-dependent transcriptomal signature encodes other pro-mitogenic and pro-inflammatory factors that have not been yet analyzed. It also contains factors with assigned roles in angiogenesis (i.e., Cx46 [ID number: 16007], IL6, VEGFβ), the polarization of the TH1 cell response towards the TH1 (i.e., Cxcl5 [ID number: 20302], Ccl4 [ID number: 20303], Cxcl5 [ID number: 20311], Il1β, Spp1 [ID number: 20750], TNFα), and TH17 (i.e., Cxcl3 [ID number: 12985], Cxcl2 [ID number: 20310], Cxcl5, Il6, Il10 [ID number: 16153]) subtypes or the tumor-induced “education” of dermal fibroblasts (i.e., IL1β) [29,30,41–43], thus suggesting that the engagement of the Vav2/Vav3 route in keratinocytes could result in a widespread reprogramming of the tissue microenvironment (Figure 8E). This biological program is also endowed with multiple positive feedback mechanisms that can lead to self-amplification and long-term signal sustenance upon its initial engagement in keratinocytes. An obvious signaling relay is the Vav→IL6→IL6-R→Vav→Stat3 route, since it is known that the stimulation of phospho-Stat3 re-feeds this autocrine loop by activating transcriptionally the IF6 gene [44,45]. The targeted inflammatory and stromal cells provide additional options for
amplification and diversification of signals, since those cells can turn on additional paracrine mechanisms that target keratinocytes and stromal cells [41–43]. Thus, it is likely that the initial activation of the Vav route in keratinocytes will kindle a “butterfly effect” that will induce widespread and reciprocal signaling interactions among keratinocytes, resident stromal cells, and newcomer inflammatory and immune cells.

Our work also sheds light on issues related to functional redundancies with the Rho GEF family and Vav subfamily during the initiation and promotion phases of skin tumors. On the one hand, the cell reconstitution experiments indicate that Vav2 and Vav3 seem to act redundantly in all the biological processes observed in wild-type and Vav2−/−;Vav3−/− keratinocytes kept for 12 h with serum, without serum, or without serum plus the indicated extracellular factors (n = 3). (C) Determination by flow cytometry of the percentage of wild-type and Vav2−/−;Vav3−/− keratinocytes that have entered S phase after 4.5 h under the indicated culture conditions (n = 3). (D–F) Phosphorylation and expression status of Erk and Stat3 in serum-starved wild-type and Vav2−/−;Vav3−/− keratinocytes stimulated with either EGF (D) or IL6 (E–G) for the indicated periods of time. In panels (F) and (G), keratinocytes were transduced with empty and Vav-encoding lentiviruses prior to the starvation and stimulation steps as indicated in the respective panel (n = 3). (H) Tyrosine phosphorylation levels of endogenous Vav2 (top panel) in wild-type keratinocytes treated with the indicated agents for 5 min (n = 2). Due to problems with the detection of the endogenous proteins after blot stripping, the loading control shown in the second panel from top was made using a parallel immunoprecipitation with the same anti-Vav2 antibody.

doi:10.1371/journal.pbio.1001615.g006

Materials and Methods

Ethics Statement

All animal work has been done in accordance with protocols approved by the Bioethics committees of both the University of Salamanca and CSIC.

Expression of Rho GEFs Using Bioinformatic Analyses

To analyze the expression of Rho GEFs mRNAs in skin and tumors, raw data containing samples from normal tail skin (n = 83), papillomas (n = 60), and carcinomas (n = 68) was downloaded from the Gene Expression Omnibus website (Accession number: GSE21264). These data were obtained in Balmain’s laboratory using Affymetrix Mouse Genome 430 2.0 arrays and animals belonging to a mixed Mus musculus FVB/Mus spretus genetic background [38]. Signal intensity values were obtained from CEL files after RMA. Probesets corresponding to Rho/Rac GEFs were extracted from the dataset and ANOVA analysis used to identify Rho/Rac GEF-encoding transcripts that were differentially expressed between normal tail, papillomas, and carcinomas (p value <0.01). For those genes with more than one probeset significantly deregulated, we selected the one with the lowest p value for graphic representation.

Analysis of mRNA Abundance

Total RNA was extracted from the indicated cells using Trizol (Sigma) and quantitative RT-PCR performed using the Quantitect SYBR Green RT-PCR kit (Qiagen) and the iCycler machine (Bio-Rad) or, alternatively, the Script One-Step RT-PCR kit (BioRad) and the StepOnePlus Real-Time PCR System (Applied Biosystems). Raw data were then analyzed using either the iCycler iQ Optical System software (Bio-Rad) or the StepOne software v2.1 (Applied Biosystems). We used the abundance of the endogenous Gapdh mRNA as internal normalization control. Primers used for transcript quantitation included 5′-TGG CCC AGA ACA AAG GAA TTC-3′ (forward for mouse Vav1), 5′-AAG CGC ATT AGG TCG TCC TGG TA-3′ (reverse for mouse Vav1), 5′-AAG CCT GTG TCG ACC TCC CAG-3′ (forward for mouse Vav2), 5′-GTG TAA TCG ATC TGC CGG GAT-3′ (reverse for mouse Vav2), 5′-GGG TAA TAG AAC AGG CAC AGC-3′ (forward for mouse Vav3), 5′-GGG ATT TAC TTC ACC TCT CCT CCA C-3′ (reverse for mouse Vav3), 5′-GGG AAA AAG TCA GTC CCA CC-3′ (forward for mouse Fyn, transcript variants 1 and 2), 5′-AAAG CAC CCA ACA ACC AGC-3′ (forward for mouse Fyn, transcript variants 1 and 2), 5′-CTG TCG TAA CAA AGC AGG GCC TG-3′ (forward for mouse Fyn, transcript variant 3), 5′-TAG GTG CCC AGT GTG AGA GG-3′ (reverse for mouse Fyn, transcript variant 3), 5′-CGT CCG CCA CCT TCT TGG TAG AGA GAG CAT-3′ (forward for mouse Cdc42), 5′-CTA CTT CTG TCT GGA CCA CCT CGA C-3′ (reverse for mouse Cdc42),
Figure 7. The defects of Vav2/Vav3-deficient mice in the promotion phase of skin tumorigenesis have an autocrine/paracrine basis. (A–D) Quantification of the epidermal hyperplasia (A, C) and BrdU incorporation (B, D) observed in wild-type and Vav2^{−/−};Vav3^{−/−} mice upon 24 (A, C) or 17 (B, D) h after indicated treatments (n = 4). TPA and extracellular factors were applied topically and intradermally, respectively. (E–F) Quantification of the neutrophil infiltration in wild-type (E, F), Vav2^{−/−};Vav3^{−/−} (E, F), and Vav1^{−/−};Vav2^{−/−};Vav3^{−/−} (TKO) (F) mice upon 24 h treatments with the indicated stimuli (n = 4). In panel (F), the right graph represents data obtained upon IL6 injections. TPA and extracellular factors were applied topically and intradermally, respectively. doi:10.1371/journal.pbio.1001615.g007
AAG ACA GAC G-3' (reverse for mouse Hbegf), 5'-GCA GAC ACC ACA CCG GCA CAA-3' (forward for mouse Hgf), 5'-GCA CCA TGG CCT CGG GTC-3' (reverse for mouse Hgf), 5'-TTT GGA AAG AGC GAC GAC TT-3' (forward for mouse Fgf7), 5'-GGG AGG ATC CGT GTC AGT AT-3' (reverse for mouse Fgf7), 5'-CCT ACC GCT CGA ATT TGG AAC-3' (forward for mouse Il6), 5'-AGC GAC CCC AAA AGA TGA AGG GGT-3' (forward for mouse Il6), 5'-GGG AAC AGC GTC ATC CAG CAG G-3' (reverse for mouse Il6), 5'-GGC TGG TCT TGG TCT GCT TGG GC-3' (forward for mouse Il6), 5'-GGG ATC ATC TTC CAT CGT AA-3' (reverse for mouse Il6), 5'-GCC AGG CAA CGT ATC AAA GT-3' (forward for mouse Il6), 5'-CCC AGG AAA GCA ATC ACA TTA-3' (reverse for mouse Il6), 5'-GGG ACC TGA GGA ATC ATC GA-3' (forward for mouse Il6), 5'-TCT AGG GGT GGT ACC TGT G-3' (reverse for mouse Il6), 5'-TGC TTT GTC TAG GTT CC-3' (forward for mouse Gapdh), and 5'-TCT GGT TGT TGT GTA CTA CAA G-3' (reverse for mouse Gapdh). Primers used for quantitating Inhba, Ptgs2, Tacstd2, and Ilk transcripts were described before [17]. To calculate the number of copies of mouse Vav family mRNAs in cell/tissue samples, the Ct values obtained for the amplified Vav1, Vav2, and Vav3 cDNA fragments by qRT-PCR in each sample were compared with those obtained using serial dilutions of plasmids of known concentration containing the Vav1 (pJLZ52) [13], Vav2 (pCCM33) [17], and Vav3 (pCCM31) [17] cDNAs. The number of copies obtained for each transcript was finally calculated using this titration curve and the size of each plasmid.

Animal Studies

Single and compound Vav family knockout mice were described elsewhere [19,23,47–49]. For long-term carcinogenesis exper-
ments, the backs of animals of the indicated genotypes were shaved and, 2 d later, the two-step carcinogenic DMBA/TPA protocol initiated using a single topical application of DMBA (25 μg diluted in 200 μl of acetone, both from Sigma). The promotion phase consisted of biweekly applications of TPA (200 μl of a 1×10⁻³ M solution in acetone, Sigma) during a 20-wk-long period. For complete carcinogenesis, mice were treated biweekly with 5 μg of DMBA alone in 200 μl of acetone during 20 wk. The number, size (measured with a digital caliper), and incidence of papilloma was determined weekly. At the end of the experiment, animals were injected intraperitoneally with BrdU (100 μg/g body weight, Sigma) and euthanized 1 h later.

For short-term studies of in vivo epidermal apoptosis, the dorsal skin of mice was treated with a single application of either DMBA (25 μmol in 200 μl of acetone) or acetone (200 μl) 2 d after shaving. For short-term in vivo proliferation assays, the dorsal skin of mice was treated with either one or four applications of either TPA (6.8 nmol in 200 μl acetone) or carrier solution 2 d after shaving. Animals were injected with BrdU and euthanized, as indicated above. For the determination of in vivo cell cycle transitions, animals were treated with a single topical application of TPA and, 1 h before euthanasia, injected intraperitoneally with BrdU. Alternatively, TPA-treated animals were euthanized and the epithelial layer obtained to generate tissue cell extracts.

For intradermal injection of mitogens and cytokines, mice were anesthetized and injected under the epidermal layer of their skin with 10 μl of either the appropriate protein-containing saline solution or the control buffer injected using a 30-gauge needle and a Hamilton microsyringe. The concentration of ligands (Peptotech) in the injection solution was 100 ng/ml. Mice were then BrdU labeled and killed as above.

For bone marrow reconstitution experiments, 3–5×10⁶ cells of donor bone marrow cells were injected intravenously into recipient mice that were previously subjected to sublethal doses of irradiation (600 rad; 1 Gy = 100 rads). In these experiments, we used “wild-type” C57BL/6 Ly5.1 mice in order to distinguish the hematopoietic populations derived from them (which express the CD45.1 surface marker) and from the knockout C57BL/10 mice (expressing the CD45.2 surface marker). Reconstitution experiments were done in both orientations. Eight weeks after injection, peripheral blood samples were collected from the cheek vein and the proper reconstitution of the immune system by the injected donor cells evaluated using flow cytometry. Surface markers used in the cytometry experiments included an alloglycophycyanin-labeled mouse monoclonal antibody to CD45.2, a biotin-labeled mouse monoclonal antibody to mouse CD45.1, a biotin-labeled rat monoclonal antibody to mouse CD45/R/B220, a biotin-labeled rat monoclonal antibody to mouse CD11b, a phycoerythrin-labeled hamster monoclonal antibody to mouse CD3ε (all from BD Pharmingen), a biotin-labeled hamster monoclonal antibody to mouse TCRβ, and a phycoerythrin-labeled rat monoclonal antibody to mouse CD19 (both from eBioscience). Bone-marrow-reconstituted animals were then subjected to topic TPA treatments in the skin as indicated above.

Whereas the long-term carcinogenesis assays were done in animals of both the FVB and C57BL/10 genetic backgrounds, we selected animals of the C57BL/10 background for the short-term studies. This facilitated comparative studies with other Vav family knockout animals (i.e., single Vav1⁻/⁻ and triple Vav1⁻/⁻;Vav2⁻/⁻;Vav3⁻/⁻ mice, which were all homogenized in that background) as well as the bone marrow reconstitution experiments (which required transplantation between genetically compatible donor and recipient mice). At the beginning of each experimental procedure, cohorts of 6–8-wk-old animals with an even gender distribution of each genotype subset were used.

Samples from tumors and short-term skin experiments were processed following three independent protocols: (i) Fixed in 4% paraformaldehyde (Sigma), (ii) cryoprotected and stored at −70°C, and (iii) snap-frozen and stored at −70°C for molecular analyses (i.e., RNA and protein extraction).

Histochemical Analyses

Tissues were extracted, fixed in 4% paraformaldehyde (Sigma), cut in 2–3 μm thick sections, and stained with hematoxylin/eosin. Tumor sections were analyzed by pathologists to classify them according to malignancy grade (benign, benign plus carcinoma in situ, malignant) and level of differentiation (high, mild poor). In short-term experiments, the thickness of the epidermal layer and total skin thickness was measured in vertical cross-sections in at least 10 different locations in each mouse to determine epidermal hyperplasia and inflammatory response (edema), respectively.

Immunohistochemical Experiments

For standard immunohistochemical staining, paraffin-embedded sections were dewaxed, microwaved in citrate buffer, blocked with 10% nonimmune horse serum (Gibco), and incubated overnight with the appropriate primary antibody at 4°C. After exhaustive washing in 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, and 0.1% Tween-20 (PBST), sections were incubated with appropriate biotin-coupled secondary antibodies (all used at a 1:1,000 dilution in PBST) followed by avidin-peroxidase (ABC Elite Kit Vector, Vector labs). Positive staining was determined using diaminobenzidine as a substrate (DAB Kit Vector, Vector labs) following the manufacturer’s recommendations. Sections were then counterstained with hematoxylin and mounted. Images were captured using an Olympus BX51 microscope coupled to an Olympus DP70 digital camera. Staining quantification was blindly assessed by two independent investigators and classified according to intensity (0–10) and estimation of ratio of cells stained (0–1). The relative value for each section was scored as the product of intensity × ratio given a general score ranging from 0 to 10. For immunofluorescent staining, sections treated as before were incubated with either a Alexa Fluor 488-labeled goat anti-rabbit IgG antibody (Molecular Probes, 1:200 dilution) or a Cy3-conjugated goat anti-mouse IgG antibody (Jackson Immunoresearch laboratories, Inc, 1:200 dilution), washed, and countersatined with 4′,6-diamidino-2-phenylindole (DAPI; 2 ng/ml, Sigma) with or without rhodamine-labeled phalloidin (Molecular Probes, 1:200 dilution). Primary antibodies used in these experiments included rabbit polyclonal antibodies to keratin 1, keratin 5, keratin 14, and filaggrin (Covance, 1:500 dilution) and rabbit polyclonal antibodies to IL6 (Genzyme, 1:100 dilution), rat monoclonal antibodies to keratin 8 (Tromalin, not commercial; 1/5 dilution of the hybridoma supernatant) and CD45 (BD Biosciences, 1:50 dilution), mouse monoclonal antibodies to keratin 10 (Santa Cruz Biotechnology, 1:50 dilution), keratin 13 (Sigma, 1:50 dilution) and histone H2A.X (Cell Signaling, 1:100 dilution), and a rabbit polyclonal antibody to myeloperoxidase (Abcam, 1:250 dilution). To detect proliferating cells, dewaxed sections were denaturalized in 2N HCl at 37°C for 1 h, washed extensively in 0.1 M borate buffer, blocked with 2% nonfat dry milk (Nestlé) in 0.1% Triton-PBS, and incubated overnight with a mouse monoclonal antibody to BrdU (BD Biosciences, 1:400 dilution). To detect apoptotic cells, we used two different approaches. In some cases, tissue sections were deparaffinized, hydrated, digested with proteinase K (Dako) for 30 min at 37°C, and subjected to the Tunel reaction using the...
Isolation and Culture of Primary Keratinocytes

Epidermis from neonates of the indicated genotypes were treated with 250 U/ml of dispase (Roche) overnight at 4°C and keratinocytes prepared using CnT07 media (CELLaTEC) according to the manufacturer’s instructions. Keratinocytes were maintained in CnT07 media on type I collagen-precoated plates (BD Biosciences). When genotypically mixed cultures were utilized, the keratinocytes of one of the genotypes used were labeled in culture with a cell permeable chromophore (CellTracker green CMFDA, Invitrogen) for 30 min according to the manufacturer’s instructions. Labeled and nonlabeled cultures were trypsinized and plated either as genotypically pure or mixed populations in tissue culture plates.

Apoptotic rates in vitro were determined by flow cytometry using the Annexin V kit (Immunostep). In vitro cell cycle transitions were determined using the Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen). For in vitro apoptotic assays, exponentially growing keratinocytes of the indicated genotypes were either serum starved in Eagle’s minimal essential medium (EMEM, Lonza) supplemented with 0.05 mM CaCl2 (Sigma) or, alternatively, treated with 100 μM DMBA, 0.15 μM bleomycin (Sigma), or 2 mM dihydrothreitol (Sigma). Cells were then harvested 8-24 h later and the number of apoptotic cells determined by flow cytometry using the Annexin V kit (Immunostep). In apoptotic experiments using keratinocytes ectopically expressing proteins, cells that had integrated the lentiviral particle (GFP) were gated away from noninfected (GFP-) cells. A similar gating strategy (presence/absence of the CellTracker green CMFDA chromophore) was used to characterize apoptotic rates in genotypically mixed cell cultures. In rescue experiments with extracellular ligands, these factors were added at the beginning of the starvation period at a concentration of either 10 ng/ml (EGF, TGFβ, HGF, FGF7; all obtained from Peprotech) or 100 ng/ml (IL6, Peprotech) and apoptosis quantified as above after an overnight incubation.

For keratinocyte G1/S phase transition assays, cells were starved for 3 h as above and then stimulated by the addition of 0.2 μM TPA, 10 ng/ml of receptors for transmembrane tyrosine kinases (EGF, TGFβ, HGF, FGF7); 10 ng/ml IL1β (Peprotech), 100 ng/ml IL6, or 8% calcium-chelated fetal calf serum. After 4 h, cells were incubated with the EdU reactive (Invitrogen) for 30 min, and the percentage of cells in S phase (EdU+) determined using the Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen).

For intracellular signaling experiments, exponentially growing primary cells of the indicated genotypes were washed and starved for 3 h in EMEM supplemented with 0.05 mM CaCl2. For stimulation, we used EMEM supplemented with 0.2 μM TPA, 10 ng/ml EGF, or 100 ng/ml IL6 for the indicated periods of time. When indicated, the pan-PKC GF109203X (5 μM, Sigma), the classical PKD-specific Go6976 (3 μM, Calbiochem), and the Src family PP2 (2 μM, Calbiochem) inhibitors were added to the starved keratinocytes 30 min before the stimulation with TPA. The PP3 molecule was used as negative control for the PP2 experiments (2 μM, Calbiochem).

When indicated, HA-Vav2, Myc-Vav3 with or without GFP were expressed in wild-type (GFP) or Vav2+/−;Vav3−/− (each of the above proteins) keratinocytes using lentiviral delivery methods. To this end, the pCMV33 [17], pCMV31 [17], or pCQ81 [21] vectors were transfected into Lentil-X 293T cells (Clontech) using the Lentil-X HT packaging mix (Clontech). Viral particles were collected 48 h after transfection, concentrated using the Lentil-X concentrator kit (Clontech), and then used to infect keratinocytes of the indicated genotypes during 3 consecutive days using centrifugation at 1,500 x g in the presence of 8 μg/ml polybrene (Sigma). As controls, we carried out infections of wild-type and mutant keratinocytes using either the empty pLVX-IRES-Hyg or the GFP-encoding pcDH1-MCS1-EF1-coGFP (System Biosciences) lentivirus. The shRNA-mediated knockdown of Fyn transcripts was carried out using lentiviral particles (TRC lentiviral Mouse Fyn shRNA; Thermo Scientific) as previously described [17]. The TRC number and the shRNA sequence yielding the greatest knockdown was clone number TRCN0000023392 (5′-AAA CCC AGG GCT GGC TTG GAA AAG-3′). This clone was used in the experiments described in this work.

Protein Abundance Determinations

In the case of tissue extracts, skin samples were excised from the euthanized animals, placed on ice-cold glass plates, the epidermis removed with a razor blade, transferred into a lysis buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% Triton X-100, 1 mM Na3VO4, 10 mM β-glycerophosphate, and a mixture of protease inhibitors [Complete, Roche]), and mechanically homogenized using the GentleMACS dissociator (Miltenyi Biotech). In the case of primary keratinocytes maintained in culture, cells were washed with chilled PBS, scrapped in lysis buffer, and disrupted by extensive vortexing (Ika). Extracts were precleared by centrifugation at 14,000 rpm for 10 min at 4°C, denatured by boiling in SDS-PAGE sample buffer, separated electrophoretically, and transferred onto nitrocellulose filters using the iBlot Dry Blotting System (Invitrogen). Membranes were blocked in 2% BSA (Sigma) in TBS-T (25 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.1% Tween-20) for at least 1 h and then incubated overnight with the appropriate antibodies. Those included rabbit polyclonal antibodies to phospho-Erk1/2 (residues Thr202/Tyr204; Cell Signaling, 1:1,000 dilution), total Erk1/2 (Cell Signaling, 1:1,000 dilution), phospho-Stat3 (residue Tyr705; Cell Signaling, 1:1,000 dilution), total Stat3 (Cell Signaling, 1:1,000 dilution), cyclin E (Abcam, 1:1,000 dilution), the Myc epitope (Upstate/Millipore, 1:1,000 dilution), Gp130 (Cell Signaling, 1:1,000 dilution), PKC and PKD (all from Cell Signaling, 1:1,000 dilution), as well as mouse monoclonal antibodies to z-tubulin (Calbiochem, 1:1,000 dilution), phosphotyrosine (Santa Cruz Biotechnology, dilution 1:1,000), the HA epitope (Covance, 1:1,000 dilution), and IL6-Ra subunit (Santa Cruz Biotechnology, 1:500 dilution). Homemadereasket polyclonal antibodies to Vav2 and Vav3 have been previously described [16,20,24]. After three washes with TBS-T to eliminate the primary antibody, the membrane was incubated with the appropriate secondary antibody (GE Healthcare, 1:5,000) for 30 min at room temperature. Immunoreactive bands were developed using a standard chemoluminescent method (ECL, GE Healthcare). In the case of immunoprecipitations, keratinocyte lysates obtained as above were incubated overnight at 4°C using either a rabbit polyclonal antibody to Vav2 or a monoclonal antibody to HA. Immunocomplexes were collected with Gamma-bind G-Sepharose beads (GE Healthcare Life Biosciences),
washed, and analyzed by immunoblotting as above. ELISAs were used to measure the amount of IL-6 (IL-6 Mouse ELISA Kit, Invitrogen) and HGF (HGF Mouse ELISA kit, Abnova) according to the manufacturer’s instructions. Absorbance at 450 nm was measured immediately at the end of the protocol using a plate reader (Ultravisione, Tecan).

GTPase Activation Assays
Total cellular lysates were obtained as above, snap frozen, thawed, quantified, and analyzed using Rac1 and RhoA G-LISA assay kits according to the manufacturer’s instructions (Cytoskeleton). Absorbance at 490 nm was measured using a UltraevoXII plate reader.

Microarray Analyses
All microarray experiments were performed by the personnel of the Genomics and Proteomics Unit of our Institution. Total cellular RNA was extracted from the back skin of wild-type or knockout mice treated as described before (n = 3 for each treatment) using the RNAeasy kit (Qiagen), quantified using 6000 Nano Chips (Agilent), and used (2.5 μg/sample) to generate labeled cRNA probes according to the manufacturer’s instructions (Affymetrix). Purified RNA was processed and hybridized to Affymetrix GeneChip Mouse Gene 1.0 ST as indicated elsewhere [17,30]. Signal intensity values were obtained from CEL files after robust multichip average [51,52]. We performed Pavlidis template matching analysis, in which the Pearson’s correlation coefficient is computed between the intensities measured for each gene and the values of an independent variable [53]. The p values to test for the null hypothesis that the correlation is zero are provided. Corrected p values were also calculated (Q value). For functional annotation purposes, genes were considered differentially regulated if their Q values were lower than 0.05. For metagenomic analysis, we used as threshold significance values a Q ≥ 0.025 and fold change variations relative to control skin ≥ 1.5. Graphical representation of microarray data was generated using hierarchical clustering analysis and the BioConductor HCLUST tool.

Further bioinformatic analyses were used to check the expression of Vav2/Vav3-dependent mRNAs in normal skin and skin tumors. To that end, probesets within GSE1264 dataset corresponding to A2 and A3 gene clusters were analyzed from differential expression between normal tail, papillomas, and carcinomas using the microarray database indicated above and ANOVA analysis (p ≤ 0.01). For those genes whose dependence with more than one probeset significantly deregulated, we selected the one with the lowest p value for representation.

The raw microarray data generated in this work have been uploaded to the GEO database (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token = pijx7iqgwowqfrq&acc = GSE40849).

Statistics
Differences in tumor multiplicity and incidence were analyzed by the Mann-Whitney U test and the χ² test, respectively. Other wet lab data were processed using the Student’s t or the one tail Mann-Whitney tests. In all cases, p values lower than 0.05 were considered statistically significant. p values were represented in all figures as * (when ≤ 0.05), ** (when ≤ 0.01), and *** (when ≤ 0.001). Data obtained are given as the mean ± the s.e.m.

Supporting Information

Figure S1 Expression of Vav family members and Rho GEFs of the Dbl family in GSTs. (A, B) qRT-PCR determination of the number of copies (A) and relative abundance (B) of Vav family mRNAs in keratinocytes (A), normal skin (B), and DMBA/TPA-induced papillomas (B) from FVB (A, B) and C57BL/10 mice (A). In (B), values are given relative to the abundance of the indicated transcript in the appropriate control sample (which was given an arbitrary value of 1), au, arbitrary units. These results show that the Vav2 and Vav3 mRNAs are expressed at much higher levels than the Vav1 transcript in primary keratinocytes isolated from mice of both the FVB or C57BL/10 genetic backgrounds. The abundance of those two transcripts increased about 3-fold in DMBA/TPA-induced papillomas and cutaneous squamous cell carcinomas (cSCCs) when compared to normal skin. By contrast, the Vav1 mRNA only underwent a significant increase in abundance in cSCCs, although its overall expression levels remained significantly lower than those for the other two Vav family transcripts using copy number criteria. (C) Bioinformatic analysis of the expression pattern of Rho/Rac GEF-encoding mRNAs in skin and GSTs in the Balmain’s dataset. This dataset was generated with Affymetrix microarrays using samples from DMBA/TPA-induced tumors and paired normal tail skin samples [38]. Signal log ratio abundance levels are depicted as gradients from dark blue (lowest abundance) to dark red (highest abundance). Sample type is indicated at the top. Clusters (C1–C4) of similarly expressed mRNAs are indicated on the left. Transcript names are indicated on the right, with Vav family and Tiam1 mRNAs highlighted in red. These data indicate that, in addition to the Vav family mRNAs and the previously described Tiam1 transcript [4], 51 additional Rho/Rac GEFs are also enriched in skin (cluster C1), skin and papilloma (cluster C2), papillomas and cSCCs (cluster C3), or cSCCs (cluster C4).

(TIF)

Figure S2 Analysis of the skin of wild-type and Vav2−/−;Vav3−/− mice. (A) Hematoxylin–eosin stained skin sections from newborn mice of the indicated genotypes (top) and postnatal stages (P, left). Scale bar, 100 μm (n = 3 mice of each genotype). WT, wild type; DKO, double Vav2−/−;Vav3−/− knockout mice. (B) Expression of the indicated differentiation keratinocyte markers (left) in the dorsal back skin of adult mice of the indicated genotypes (top) (n = 3 mice of each genotype). In addition to antibodies to keratin K14 (K14), keratin K1 (K1, ID number: 16678); and filaggrin (signals shown in green color), sections were counterstained with 4’6-Diamidino-2-phenylindole (DAPI) and rhodamine-phalloidin to visualize cell nuclei (blue color) and F-actin (red color), respectively. Scale bar, 100 μm. These results show that the histological structure and differentiation process are quite similar in skin of all animals analyzed.

(TIF)

Figure S3 Normal levels of Erk and Rac1 activation are restored in Vav2−/−;Vav3−/− keratinocytes upon the ectopic expression of Vav family proteins. (A, B) Phosphorylation and expression status of Erk1,2 in serum-starved wild-type and Vav2−/−;Vav3−/− keratinocytes that were transduced with empty (A, B), HA-Vav2 (A), and Myc-Vav3-encoding (B) lentiviruses prior to starvation and subsequent TPA stimulation for the indicated periods of time (n = 3). (C) Rac1 activity levels induced by TPA in quiescent wild-type and Vav2−/−;Vav3−/− keratinocytes that were transduced prior to the stimulation step with the indicated lentiviruses (n = 3).

(TIF)

Figure S4 Dissection of the TPA/Vav-dependent route in keratinocytes. (A) Expression and TPA-induced activation of indicated PKC family proteins and the protein kinase D (PKD) substrate in total cellular lysates obtained from wild-type keratinocytes upon a 5 min stimulation with either TPA or EGF (top) (n = 1). MW, molecular weight. (B) qRT-PCR determination
of the abundance of the Fyn mRNA in wild-type keratinocytes that were either mock infected or transduced with lentiviruses encoding a Fyn-specific shRNA (n = 3). Values are given relative to the abundance of the transcript in mock-infected cells (which was given an arbitrary value of 1).

Figure S5 Vav proteins regulate the expression of a large transcriptomic program during the promotion phase of skin tumors. (A) Hierarchical cluster diagram of mRNAs whose abundance changes more than 1.5-fold in a F2V2/Vav3-independent (left panel) or -dependent (right panel) manner between control and TPA-stimulated skin. Signal log ratio abundance levels are depicted on a dark blue (lowest abundance) to dark red (highest abundance) scale. Columns represent replicates of the indicated experimental groups. (B) In silico analysis of the expression of Vav2/Vav3-dependent genes belonging to the A1 (top panel) and A2 (bottom panel) clusters in normal mouse skin and in DMBA/TPA-induced mouse papillomas and skin carcinomas (red). mRNA abundance is depicted as in (A). Specific cluster expression groups are indicated at the right. (C, D) qRT-PCR analysis showing the abundance of indicated mRNAs in naïve skin (G), TPA-stimulated skin (G), quiescent keratinocytes (D), and TPA-stimulated keratinocytes (D) of indicated genotypes (n = 3).

Figure S6 Vav proteins promote autocrine/paracrine signaling in TPA-stimulated skin. (A) ELISA detection of HGF (top panels) and IL6 (bottom panels) in the skin (left panels) and serum (right panels) 24 h upon the stimulation of mice of indicated genotypes with TPA (n = 3). (B) Immunohistochemical detection of IL6 (brown color) in the epidermis of mice of indicated genotypes after being treated with either acetone or TPA for 24 h (n = 5).

Figure S7 Implication of Fyn in the keratinocyte TPA/Vav-dependent autocrine/paracrine program. qRT-PCR-determined abundance of indicated mRNAs in control and Fyn-knockdown keratinocytes (both from wild-type mice) upon stimulation with TPA for indicated periods of time (n = 3).

Figure S8 The expression of Vav-dependent genes of breast cancer cells is also suppressed in the epidermis of TPA-stimulated skin. (A) ELISA detection of HGF (top panels) and IL6 (bottom panels) in the skin (left panels) and serum (right panels) 24 h upon the stimulation of mice of indicated genotypes with TPA (n = 3). (B) Immunohistochemical detection of IL6 (brown color) in the epidermis of mice of indicated genotypes after being treated with either acetone or TPA for 24 h (n = 5).

Table S1 Histological analysis of skin tumors developed in FVB mice of the indicated genotypes using the DMBA+TPA treatment.

Table S2 Histological analysis of skin tumors developed in FVB mice of the indicated genotypes using the DMBA/DMBA treatment.

Table S3 Microarray analysis of the Vav2/Vav3-dependent transcriptome in skin.

Table S4 Examples of Vav2/Vav3-dependent extracellular factors induced during the promotion phase. Genes up-regulated or down-regulated in the skin of TPA-stimulated wild-type but not in Vav2+/−, Vav3−/− mice are shown in red and blue, respectively. Selected genes have been included according to statistical significance value and independently of any fold change variation criteria.

Acknowledgments
We thank M. Blázquez and personnel of the Pathology, Microscopy, Bioinformatics, and Genomics & Proteomics Units for excellent technical assistance.

Author Contributions
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MMM BA JMP XRB. Performed the experiments: MMM VO AA PD CC SR. Analyzed the data: MMM RGE BA JMP XRB. Contributed reagents/materials/ analysis tools: RGE BA JMP. Wrote the paper: XRB.

Vav Proteins’ Role in Skin Cancer

Robin Mejia*
Freelance Science Writer, Albany, California, United States of America

The most common form of skin cancer, squamous cell carcinoma usually isn’t deadly. However, neither is it benign; in some cases it can be aggressive and spread to other organs. And much is still not known about the signaling pathways that enable the formation of this kind of cancer.

Rho GTPases, which influence gene expression, cell proliferation, and programmed cell death, show high levels of activity in many cancers, including skin cancer. Researchers believe a family of compounds called GDP/GDFT exchange factors (GEFs) are critical to Rho GTPase activity in tumor development and maintenance; however, because there are so many GEFs, determining which ones are essential and what their exact roles are have been open questions. In this issue of PLOS Biology, Mauricio Menacho-Márquez and colleagues start to provide answers. The researchers describe studies showing that GEFs of the Vav subfamily play important roles in the development of skin cancer tumors in mice.

To do this, the scientists worked with knockout mice deficient for Vav2 and Vav3 and also with tissue cultures that were deficient for the two proteins. First, using wild-type and knockout mice, the researchers used two methods involving powerful carcinogens to promote the development of squamous cell carcinomas. In one case, mice were subjected to repeat applications of 7,12-dimethylbenz[a]anthracene (DMBA). The knockout mice had a 2-fold reduction in total tumors, indicating that the knocked out genes (Vav2 and Vav3), were important to tumor formation. When the mice were treated with DMBA followed by 12-O-tetradecanoylphorbol-13-acetate (TPA), the difference was even starker. The knockout mice showed normal skin development, suggesting that Vav2 and Vav3 were important for cancer formation but not necessary for normal skin development.

Further experiments demonstrated that Vav proteins influence intrinsic signaling programs in skin cells. Specifically, they showed that when TPA was added to keratinocyte cell cultures, there was reduced activation of proteins involved in cell cycle progression such as extracellular-regulated kinase (Erk), a serine/threonine kinase, and the signal transducer and activator of transcription (Stat3), a transcription factor. The phosphorylation levels of Erk and Stat3 could be rescued by the re-expression of Vav2 or Vav3 in these cells, indicating that those defects were a direct consequence of the absence of these proteins in skin cells.

Microarray experiments revealed that Vav proteins are involved in the activation of a large biological program composed of extracellular factors that influence the behavior of epithelial cells and their neighbors, such as inflammatory and other tumor-associated stromal cells. Co-culturing of Vav-deficient keratinocytes in the presence of wild-type cells eliminated both their survival and proliferative defects, indicating that Vav proteins play a critical role. This extracellular signaling program was not conserved in the Vav2/Vav3-dependent transcriptome that the same group has described recently in mouse breast cancer cells, supporting the idea that this biological program is specific to the epidermal cells. By contrast, the Vav2/Vav3-dependent gene signature was found conserved in fully developed tumors, indicating that it may also play roles in tumor maintenance and/or progression.

Taken as a whole, these experiments indicate that Vav2 and Vav3 play important roles in the initiation and development of skin cancers, and that they also promote longer-term changes in cellular signaling that support cellular survival of DNA damage, with increases in proliferation and the development of an inflamm-
inflammatory environment that can lead to tumor formation.

The researchers caution that these experiments have likely identified just “the tip of the iceberg of this biological program,” noting that the Vav2- and Vav3-dependent transcriptome they identified encodes many potentially pro-cancerous factors that have not yet been identified. Future experiments may demonstrate even more widespread reprogramming of tissue microenvironment. However, the results presented here suggest that Vav proteins may provide useful pharmacological targets. Once again, more research is needed: these studies suggest preventive therapies; further studies will show if the Vav systems would make useful targets for cancer treatments.