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Dimer–resonating valence bond state of the four-leg Heisenberg ladder:
Interference among resonances
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We study the ground state of the four-leg spin ladder using a dimer–resonating valence bond~RVB! ansatz
and the Lanczos method. Besides the well-known resonance mechanism between valence bond configurations
we find interference effects among nearby resonances. These effects were missed by standard factorizing
approaches to the RVB states.@S0163-1829~99!08441-6#
te
th
-

g
a
s

is

A
ng
. I

t
h

m

es

B
ib
w

en
t

th

m

ri-

.
ery

e

s

in
-

d

two
e it

s.
nd

ant
all
I. INTRODUCTION

Doped and undoped ladders have focused a lot of at
tion in recent years due to the existence of materials with
structure; some of them are close relatives of the highTc

oxides as the series Sr2nl22Cu2nl
O4nl22 wherenl is the num-

ber of legs forming the ladder.1 The undoped Heisenber
spin ladders withnl even are known to be spin liquids with
spin gap and exponential decaying correlation function2

The ground state~GS! of these low dimensional systems
given by a short-range resonating valence bond~RVB! an-
satz where the topological spin defects are confined.3 The
RVB picture is supported by mean field,5 density matrix
renormalization group~DMRG!,3,4 quantum Monte Carlo
~QMC!,6 and Lanczos7 results concerning ladders withnl

52,4 legs and variationalAnsätze ~RVA! for the 2-leg
ladder.8,9 The purpose of this paper is to apply the RV
method to the four-leg spin ladder with the aim of studyi
in more detail the structure of the short-range RVB state
the two-leg ladder case the basic mechanism that lowers
GS energy is the resonance between two nearest-neig
valence bonds.10 The simplest short-range RVBAnsatz is
given by a dimer-RVB state with a single variational para
eter u, which gives the amplitude of the resonance.8,9 See
Ref. 11 for a transfer matrix approach to dimer-RVB stat

II. RVA APPROACH TO THE FOUR-LEG HEISENBERG
LADDER

In the four-leg ladder case we shall study a dimer-RV
Ansatzwhere the resonance may occur among any poss
pair of nearest-neigbor parallel bonds. The phenomenon
shall investigate in this paper is the ‘‘interference’’ betwe
couples of resonating bonds. We mean by interference
influence that a pair of resonating bonds exerts on ano
pair of nearby resonating bonds. In the standard RVBAnsatz
of Liang et al.12 the RVB amplitudes have a factorized for
that cannot describe this interference effect.

The Hamiltonian of the four-leg spin ladder is given by
PRB 600163-1829/99/60~17!/12134~4!/$15.00
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~1!

whereSa(n) is the spin 1/2 operator at thea51, . . . ,4 leg
and n51, . . . ,N rung. We shall consider the cases of pe
odic or closed boundary conditions~BC! along the rungs,
i.e., J85J95J- and open BC’s along the rungs, i.e.,J8
5J9,J-50. SettingJ95J-50 we recover two decoupled
two-leg ladder Hamiltonians. IfJ50, the exact GS of Eq
~1! is given by the coherent superposition of the GS of ev
rung which can be written as

urung&512 341u014 32,

u05H 1 J85J95J-

0.366 J85J9,J-50

0 J95J-50,

~2!

where ab̄5(u↑&au↓&b2u↓&au↑&b)/A2 denotes the valenc
bond state between the sites on the legsa and b of the nth
rung. In Figs. 1~a! and 1~b! we depict the valence bond state
~2!.

Switching on the intraleg couplingJ any pair of rung
bonds will start to resonate with a pair of leg bonds as
Figs. 1~c!–1~f!. There are four types of ‘‘elementary’’ reso
nances involving two consecutive rungsn andn11 and two
legs i and j, which we denote as (12), (34), (14), an
(23). We associate an amplitudeui j to every one of these
resonances. There is also a state with four leg bonds on
consecutive rungs, which we denote as (1234), and giv
an amplitudeu1234 @see Fig. 1~g!#. Finally, we may have two
resonances (i j ) and (kl) sharing a common rung as in Fig
1~h! and 1~i!, which we denote as (12,34) and (14,23), a
give them amplitudesu12,345u34,12 and u14,235u23,14, re-
spectively. In this fashion we are able to retrieve a relev
small set of variational parameters out of the huge set of
resonating configurations.
12 134 ©1999 The American Physical Society
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Let us suppose that a pair of resonating bonds is not
fluenced by its environment. This would imply the followin
factorizationui j ,kl5ui j ukl , which, as we shall see below
never happens. Figure 1 displays all the local configurati
that should be combined in all possible manners to produ
dimer-RVB Ansatz. This seems to be a formidable proble
if we try to solve it with standard combinatorial method
However, as in the two-leg ladder case,9 the dimer-RVB
state of the four-leg ladder can be generated by the se
recurrence relations~RR! given in Fig. 2.

Figure 3 shows a state generated by these RR’s. One
characterize a dimer state withN rungs by the collection of
legs that one cuts between two consecutive rungs. If no
are cut we write(0), cutting the legsi and j we write (i j ),
and cutting four legs we write (1234). With these notatio
the state of Fig. 3 reads (12)(0)(34)(12)(0)(23) and has a
amplitudeu12u12,34u12u23.

FIG. 1. Graphical representation of the local configurations t
make up the dimer-RVBAnsatzfor the four-leg ladder. Every line
connecting two sitesa andb corresponds to the valence bond sta

ab̄ defined in the text. Sitea belongs to the even sublattice whi
site b belongs to the odd one.

FIG. 2. Recurrence relations that generate iteratively the dim
RVB state of the four-leg ladder. The empty box represents
singlet stateuN& of the ladder withN rungs. A box with two dots on
the legsi and j represents the stateuN,s i ,s j&, wheres i ands j are
free spins that form valence bonds with nearest-neighbor spin
cated in the same legs. We give explicitly the RR of the st
uN,s1 ,s2&. The RR’s of the other two-dotted states are similar. T
last RR is that of the four-dotted stateuN,s1 ,s2 ,s3 ,s4&.
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It is important to realize that not all the states of the fo
A12A23A34•••AN21,N ~whereAn,n11 denotes the set of leg
cut between the rungsn andn11) are allowed. For example
after the configuration (12) one can only have either (0)
(34), or after (1234) only (0) may follow. These selectio
rules are summarized in the graph of Fig. 4. The vertices
the graph denote the configurationsA5(0),(12),
(34),(14),(23),(1234) while a link between the verticesA
and A8 indicates that these two configurations may app
consecutively in an allowed dimer state. The amplitudes
the dimer states are associated to the links of the graph.

The RR’s of Fig. 2 generate all the dimer states of
four-leg ladder with periodic BC’s along the rungs, and th
number grows exponentially with the number of legs.13 For
the open BC’s we should restrict ourselves to dimer sta
with no bonds of length greater than one. However,
strong coupling limitJ/J8!1 forces us to include the va
lence bond 14̄as in Eq. ~2!. So the distinction between
closed and open ladders will only appear in the variatio
parameters. The existence of RR’s to generate the GSAnsatz
implies that the norm and expectation value of the Ham
tonian ~1! also satisfies RR’s, which can be iterated to gi
the energy of theAnsatz^H&N for any number of rungsN.
The set of variational parametersuX is obtained by minimi-
zation of^H&N . This method is similar to the matrix produc
Ansatzof Ref. 14 but differs in that the states kept are no
orthogonal as corresponds to a RVBAnsatz.

III. RVA AND LANCZOS RESULTS

We now present our set of results obtained with the
currence variationalAnsatzof the previous section and mak
also a Lanczos study of the four-leg ladder that we use a

t
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FIG. 3. A dimer state constructed with the RR’s given in Fig.
The dotted lines represent the cuts described in the text.

FIG. 4. Graph that encodes the dimer configurations of the fo
leg ladder. The vertices are labeled by the legs cut between
consecutive rungs. A link between two vertices represents cuts
share a common rung. Every link is associated with a variatio
parameter of the RR’s. The link connecting (0) to itself means t
the middle rung between the two cuts is a singlet that may be ei

12̄ 34̄, with amplitude 1 or 14̄23̄, with amplitudeu0.
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test ground for the goodness of the RVAAnsatz.
In Fig. 5 we plot the GS energy per site obtained with o

variationalAnsatzand the Lanczos method in the range
couplings 0,J/J8,1. We also include for comparison th
GS energy per site of the two-leg ladder. The GS energ
are very close to the exact result in the strong coupling
gion 0,J/J8,0.3, but they get worse for larger coupling
This is natural since configurations with longer bonds
expected to become more important in the weak interleg c
pling regime. The closed-rung ladder has a much lesser
energy per site than the open one. This is mainly due to
resonance~2! between the two bonds along the rungs. T
GS curves for open and closed ladders in Fig. 5 can be fi
with the formula,

E0~N!/~4NJ8!52e02e1~J/J8!22e2~J/J8!4, ~3!

~e0 ,e1 ,e2!5H 0.5, 0.15, 20.005, closed

0.404, 0.23, 20.05 open,

wheree0 is the energy per site of a single rung. Equation~3!
agrees with perturbation theory up to second order.

Let us consider now the behavior of the variational p
rameters. In the closed-rung case the choice of coupl
J85J95J- implies the existence of a rotational symmet
among the legs which leaves only four independent va
tional parameters given by

u0 , u125ui j , v12,345
ui j ,kl

ui j ukl
, u1234. ~4!

In Fig. 6 we plot these parameters in the domain
,J/J8,1. Let us comment on these results.

FIG. 5. GS energy per site in units ofJ8 of the four-leg dimer-
RVB state with closed and open BC’s and the two-leg ladder in
range 0,J/J8,1. We also plot the exact GS energies obtained
extrapolating Lanzcos results to the thermodynamic limit with la
ders of sizes 43n (n54,5,6,7).
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u0 takes the constant value 1, which coincides with t
exactJ50 result ~2!. This implies the absence of interfe
ence between rung and leg resonance.

u12 is greater than its two-leg analogu.9 For the isotropic
case one getsu1251.58 whileu51.18.9 Simple resonance is
enhanced in the four-leg ladder.

v12,34 is almost constant and less than one indicating
structive interference between resonances shearing a c
mon rung as in Fig. 1~h!.

u1234 displays an unexpected behavior since it first b
comes negative for small values ofJ/J8, reaches a mini-
mum, and starts to grow becoming positive forJ/J8.0.6.
This peculiar behavior ofu1234 is a sign of destructive inter
ference between resonances sharing two rungs.

In the case of open ladders,J95J8,J-50, one is left
with seven independent variational parameters given by

u0 , u125u34, u14, u23, v i j ,kl5
ui j ,kl

ui j ukl
, u1234.

~5!

In Fig. 7 we plot the values of these parameters in
range 0,J/J8,1. Some features that we encounter in Fig
have already appeared in the periodic case.

u0 stays almost constant with a value close to the ex
J50 result~2!.

u12 andu14 are quite similar, butu23 is much smaller. So
bonds do not like to resonate in the middle of the ladd
This is due to loss of energy induced by the existence of
long bond 14̄.

v12,34 is lower than 1, as in the periodic case, butv14,23 is
much greater than 1, which is again due to the smallnes
u23. For graphical purposes we plot in Fig. 7 the inverse
v14,23.

e
y
-

FIG. 6. Variational parameters~4! of the closed BC dimer-RVB
in the range 0,J/J8,1. We include for comparison the value o
the variational parameteru of the two-leg ladder.9
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u1234 is also suppressed but in a smaller amount than
the periodic ladder.

We have also computed the spin correlation lengthj from
the exponential decaying behavior of the spin-spin c
relator. For the isotropic case we getj50.81 for the closed
ladder andj50.92 for the open one. These results show t
the rung configurations are more important for the clos
ladder than for the open one, which is in agreement with

FIG. 7. Variational parameters~5! of the open BC dimer-RVB
in the range 0,J/J8,1.
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values taken by the variational parameters. The DMR
method yieldsj55;1010 for open ladders, while the QMC
method yieldsj57.1 ~closed! and j510.3 ~open!.6 As ex-
pected the dimer-RVBAnsatzgives a much shorter correla
tion length but it reproduces the fact thatjclosed,jopen.

We have also studied the case when the Hamiltonian~1!
becomes that of two decoupled two-leg ladders, i.e.,J9
5J-50. Curiously enough, ourAnsatzyields a GS with
bonds connecting the two ladders. The GS energy so
tained is a bit lower than the one of two uncoupled two-l
ladders and the correlation lengthj50.97 is larger than in
the uncoupled casej50.79.9

IV. CONCLUSIONS

In summary we have shown in this paper that the dim
RVB Ansatzgives a correct qualitative picture of the sho
range RVB state of the four-leg ladder. We have found
teresting interference effects between resonating vale
bond configurations that should probably carry over m
realistic Ansätze which must include longer valence bond
The next step is to generalize our methods to the do
four-leg ladders where one can study the phenomena
phase separation and stripe formation.4,15 Previous applica-
tions of the RVA method to the two-legt-J ladder,16 the
necklacet-J ladder,17 and the two-leg Hubbard model,18 sug-
gest that this goal is worth pursuing.

ACKNOWLEDGMENTS

We would like to thank J. Dukelsky for conversations a
the Centro de Supercomputacion Complutense for the a
cation of CPU time in the SG-Origin 2000 Parallel Com
puter. This work was supported by the DGES Spanish Gr
No. PB97-1190~G.S. and M.A.M.-D.!.
om-
nd

J.

S.

nd

o,
1M. Takano, Z. Hiroi, M. Azuma, and Y. Takeda, Jpn. J. App
Phys., Suppl.7, 3 ~1992!.

2E. Dagotto and T. M. Rice, Science271, 618 ~1996!.
3S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Rev. L

73, 886 ~1994!.
4S. White and D. J. Scalapino, Phys. Rev. B55, 14 701~1997!.
5S. Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev. B49, 8901

~1994!.
6M. Greven, R. J. Birgeneau, and U.-J. Wiese, Phys. Rev. Lett.77,

1865 ~1996!; B. Frischmuth, B. Ammon, and M. Troyer, Phy
Rev. B54, R3714~1996!; O. F. Syljuasen, S. Chakravarty, an
M. Greven, Phys. Rev. Lett.78, 4115~1997!.

7E. Dagotto, J. Riera, and D. J. Scalapino, Phys. Rev. B45, 5744
~1992!; Y. Nishiyama, N. Hatano, and M. Suzuki, J. Phys. So
Jpn.65, 560 ~1996!.

8Y. Fan and M. Ma, Phys. Rev. B37, 1820~1988!.
9G. Sierra and M. A. Martin-Delgado, Phys. Rev. B56, 8774

~1997!; For a review on the recurrent variational method~RVA!,
see M.A. Martin-Delgado and G. Sierra, inDensity Matrix
Renormalization, edited by I. Peschelet al. ~Springer-Verlag,
Berlin, 1999!.

10S. A. Kivelson, D. S. Rokshar, and J. P. Sethna, Phys. Rev. B35,
8865 ~1987!.
t.

.

11M. Havilio, Phys. Rev. B54, 11 929~1996!.
12S. Liang, B. Doucot, and P. W. Anserson, Phys. Rev. Lett.61,

365 ~1988!.
13The number of dimersDM ,N on a large rectangular latticeM

3N is given by the formulaDM .N5aMN where a51.3385
@P.W. Kasteleyn, Physica27, 1209~1961!#. In a nl-ladder with
N rungs we find that the number of dimers is given byFnl ,N

5 f nl

N . Comparing both formulas we expect thatanl
[ f nl

1/nl must

converge to a in the large nl limit. Indeed we find a2

51.272, a351.245, a451.298, a551.288, a651.310. Even
ladders converge more rapidly than odd ones. In the latter c
putation we use the RVA method with bonds of length 1 a
open BC’s. For the closed BC’s 4-ladder we finda451.390,
which is a large coefficient.

14S. Ostlund and S. Rommer, Phys. Rev. Lett.75, 3537~1995!; J.
M. Roman, G. Sierra, J. Dukelsky, and M. A. Martin-Delgado,
Phys. A31, 9729~1998!.

15T. Tohyama C. Gazza, C. T. Shih, Y. C. Chen, T. K. Lee,
Maehawa, and E. Dagotto, Phys. Rev. B59, R11 649~1999!.

16G. Sierra, M. A. Martin-Delgado, J. Dukelsky, S. R. White, a
D. J. Scalapino, Phys. Rev. B57, 11 666~1998!.

17G. Sierra, M. A. Martin-Delgado, S. R. White, D. J. Scalapin
and J. Dukelsky, Phys. Rev. B59, 7973~1999!.

18E. H. Kim, G. Sierra, and D. Duffy, Phys. Rev B60, 5169~1999!.


