Exploiting jasmonate-induced responses for field protection of conifer seedlings against a major forest pest, *Hylobius abietis*

Running title: Jasmonate-induced defence against a forest pest

Rafael Zas\(^1\)*, Niklas Björklund\(^2\), Göran Nordlander\(^2\), César Cendán\(^1\), Claes Hellqvist\(^2\), Luis Sampredo\(^2\)

\(^1\) Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain.

\(^2\) Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07 Uppsala, Sweden.

Corresponding author:

Email: rzas@mbg.csic.es

Phone Number: +34986854800

Fax Number: +34986841362

Number of Tables: 3

Number of Figures: 6

Word counting (including references, tables and captions): 11191

Supplemental material

Appendix A. Details of methyl jasmonate treatments and field trials, including photographs of the experimental sites and the treated seedlings. (Table A1, Figure A1-A2).

Appendix B. Supplementary results: Specific contrasts testing the effect of single and double application of 25 mM methyl jasmonate. (Table B1).

Appendix C. Supplementary results: Effect of methyl jasmonate treatments on chemical defences in the needles, on seedling growth at different times and on weevil damage during the second growing season. (Figure C1-C4).

Appendix D. Supplementary results: Relationships between chemical defences and weevil damage at field (Figure D1).
Abstract
Herbivore damage commonly initiates an increased synthesis of chemical defensive compounds in attacked plants. Such induced defences are a vital part of plant defence systems, but when herbivore pressure is high, as frequently occurs in man-made ecosystems such as agricultural and forest plantations, plants may suffer considerable damage before adequate induced defences build up. To prepare the plants for such conditions their induced defence may be artificially triggered by the exogenous application of different phytohormones involved in damage signalling. This method is already employed in agriculture but within forestry systems it has so far been restricted to promising laboratory results. The pine weevil, *Hylobius abietis*, causes damage by feeding on the bark of young conifer plants and it is one of the main threats to successful regeneration in the Palaearctic region. Here we present results from a large scale field experiment where we triggered the induced defences of conifer seedlings using exogenous application of the chemical elicitor methyl jasmonate. To enhance the generality of the results different species were planted under extremely different environmental conditions; Maritime pine and Monterrey pine in Spain, and Scots pine and Norway spruce in Sweden. Weevil damage, chemical defences, and seedling growth were studied during the two growing periods following planting. In general, treated plants showed increased quantitative defences, and were less attacked, less wounded, less girdled and showed lower mortality rates than their untreated counterparts. Effects were mostly dose dependent, although some interactive effects with tree species were observed. The treatment initially caused a growth reduction but it was later compensated by the benefit, in terms of growth, of being less damaged. The measures that are currently taken to protect forest plantations against this harmful pest all around Europe have enormous economic costs and cause important environmental hazards. Elicitation of inducible defences in seedlings in the nursery appears to be an attractive alternative to these measures. To our knowledge, this is the first field study that explores the applicability of chemical elicitors of induced defences as a way to protect forest plantations against biotic threats.

Keywords conifer seedlings; forest regeneration; growth costs; *Hylobius abietis*; induced defence; methyl jasmonate (MJ); *Picea abies*; pine weevil; *Pinus pinaster*; *Pinus radiata*; *Pinus sylvestris*; priming; reforestation; seedling protection.
Highlights

- Methyl jasmonate emerges as an attractive alternative to protect conifers against *H. abietis*
- MeJa treated seedlings were less attacked, less wounded, and showed higher survival
- Protection was long-lasting and remained effective during two growing seasons
- Results were consistent across species and environmental conditions
- Initial growth reductions were largely compensated by growth benefits due to reduced damage
1. Introduction

In common with most plants, conifers defend against herbivores with a combination of physical and chemical mechanisms. Some defences are permanently expressed, irrespective of whether the plants are actually suffering damage (constitutive defences), while others are enhanced after the recognition of damage (induced defences) (Franceschi et al., 2005; Eyles et al., 2010). Induced defences are assumed to have evolved as a cost saving strategy in which the costs of producing resistance mechanisms are only incurred when defences are actually needed, i.e., after the damage or the risk of damage has been recognized (Sampedro et al., 2011a). Constitutive defences inhibit initial attacks but are sometimes insufficient to deter the attack or to avoid the proliferation of the damage. In such cases, induced defences, including increased synthesis of chemical defensive compounds already existing in healthy plants, synthesis of new chemical defences, and the formation of new physical structures can be vital for the plant to survive the attack (e.g., Zas et al., 2011; Zhao et al., 2011b; Schiebe et al., 2012).

In recent decades considerable progress has been made towards an increased understanding of the physiological mechanisms and metabolic pathways involved in the recognition, signaling and triggering of plant induced defences against biotic stressors (Heil, 2009; Erb et al., 2012). Different plant phytohormones such as jasmonates, ethylene and salicylic acid are now known to be involved in the activation of induced defensive responses in a wide array of different plant species (e.g., Creelman and Mullet, 1995; Halitschke and Baldwin, 2005). In particular, jasmonate signaling is thought to be involved in triggering defences against herbivores and necrotrophic pathogens in several plant taxa (Glazebrook, 2005). Accordingly, the methyl ester of jasmonic acid, i.e., methyl jasmonate (MJ) has been widely used as a chemical elicitor to simulate herbivory (Koo and Howe, 2009), with the exogenous application of MJ provoking responses similar to those occasioned by insect feeding (Franceschi et al., 2002; Rohwer and Erwin, 2008). In conifers, the exogenous application of MJ sprayed to aboveground tissues is known to have a large impact on the synthesis of both terpenoids and phenolics (Zulak et al., 2009), two of the main chemical defences of conifers against insect herbivores (Franceschi et al., 2005). Increased total amounts and/or alterations of the profile of these compounds have been reported following MJ application both in young seedlings (e.g., Martin et al., 2002; Heijari et al., 2005; Moreira et al., 2009; Erbilgin and Colgan, 2012) and adult trees (e.g., Erbilgin et al., 2006; Heijari et al., 2008; Erbilgin and Colgan, 2012), and for different conifer species (Hudgins et al., 2004) from boreal conifers such as *Pinus sylvestris* (Heijari et al., 2005; Heijari et al., 2008) and
Picea abies (Erbilgin et al., 2006; Zhao et al., 2011b; Schiebe et al., 2012) to Mediterranean pines such as Pinus pinaster (Moreira et al., 2009; Sampedro et al., 2011a) and Pinus radiata (Gould et al., 2008; Gould et al., 2009; Moreira et al., 2012b). Anatomical long-lasting responses such as the proliferation of traumatic resin canals are also well documented (Huber et al., 2005; Krokene et al., 2008).

In keeping with the enhanced defence status, MJ treated conifer seedlings have been reported to show increased resistance to a wide array of fungal pathogens and herbivore insects. Spraying P. radiata seedlings with a low concentration of MJ (< 5 mM) has been shown, for example, to reduce Diplodia pinea infection by 60% (Gould et al., 2009), while spraying or fumigation of P. abies with MJ reduced the colonization of Ceratocystis polonica (Krokene et al., 2008) and protected seedlings against Pythium ultimum (Kozlowski et al., 1999). MJ application has been also shown to be effective against insect herbivores by reducing colonization, oviposition and/or damage levels of different insect feeding guilds, including phloem and bark feeders such as pine weevils (Heijari et al., 2005; Moreira et al., 2009), bark beetles such as Ips typographus (Erbilgin et al., 2006), and defoliators such as Thaumetopoea pityocampa (Moreira et al., 2013) and diprionid sawflies (Heijari et al., 2008). In some cases, MJ altered the attraction of the insect herbivores to the breeding or feeding sites due to changes in the emission of volatile organic compounds (e.g., Zhao et al., 2011a), while in others, the enhanced physical and chemical defences within plant tissues seem to be responsible for the reduced damage levels (e.g., Heijari et al., 2005; Moreira et al., 2009). Despite all these examples of positive results of MJ application protecting conifers against biotic stressors, negative results where MJ failed to protect seedlings or mature trees against particular enemies do also exist (Graves et al., 2008; Reglinski et al., 2009; Zhao et al., 2010; Vivas et al., 2012).

The responses of plants to jasmonates are not limited, however, to defence-related processes, but also include alterations of many other physiological traits related to growth and development (Cheong and Yang, 2003). Plants treated with MJ usually show reduced primary and secondary growth rates, either because of reduced photosynthetic activity (as observed by Heijari et al. (2005) after treatment with high doses (100 mM) of MJ) or just as a result of the physiological costs associated with boosting chemical defences (Sampedro et al., 2011a). This reduction in growth associated with MJ application has been outlined as a critical handicap for the practical applicability of this substance for protecting forest plantations against biotic aggressors (Holopainen et al., 2009). However, not all the growth-related responses to MJ are negative. MJ treated seedlings of P. pinaster have been found, for
example, to have many more fine roots than control seedlings, and this enhancement of the root system may both help seedling establishment and increase the tolerance to herbivore damage (Moreira et al., 2012c). Additionally, as the effect of MJ on primary growth is usually greater than that on secondary growth (Heijari et al., 2005; Moreira et al., 2013), MJ treatment favors reduced height:diameter relationships, which is something that forest nurseries aim for since it increases seedling growth and survivorship after plantation (Willoughby et al., 2009).

Although our knowledge of the complex responses of conifers to MJ is still limited, there is increasing evidence that MJ application has potential for protecting forest plantations and nursery seedlings against pests and pathogens (Holopainen et al., 2009; Eyles et al., 2010; Moreira et al., 2012a). A particular harmful forest pest that potentially could be controlled by exogenous MJ application is the pine weevil, Hylobius abietis (L.), which significantly impacts the regeneration of conifer forests after clear cutting in large areas of Europe and Asia (Långström and Day, 2004). Adult pine weevils feed on the phloem and bark of conifer seedlings of many different species, causing stem girdling and high mortality rates (Örlander and Nilsson, 1999; Day et al., 2004). If no protection measures are carried out, weevil damage can cause up to 80% mortality (Petersson and Örlander, 2003). To date no definitive treatment is available, and a combination of different prophylactic measures, including soil scarification, retention of shelter trees, physical protection of the seedlings, delayed planting, and even insecticide treatments, is currently routinely applied (Petersson and Örlander, 2003; Nordlander et al., 2009; Nordlander et al., 2011). Most of these methods are expensive to apply and/or are environmentally hazardous; moreover they are frequently insufficient to reduce the level of damage and mortality to (economically) acceptable levels.

MJ application has been shown to reduce the damage caused by the pine weevil on pine seedlings of different species both in vitro (Moreira et al., 2009; Moreira et al., 2013) and in vivo bioassays (Heijari et al., 2005; Sampedro et al., 2011b) under controlled conditions in the lab. Whether MJ can also be used to protect seedlings against the pine weevil under real field conditions is, however, yet to be tested. It is well known that a treatment that is highly efficient under controlled conditions in the lab is not always efficient under field conditions, where many interfering factors can potentially modulate its effects (Beckers and Conrath, 2007). Importantly, pine weevils are frequently a serious threat to seedlings not only immediately after planting but also during the second and following years. It is therefore important that the effect of any protecting treatment is long lasting. There are no previous studies where the effects of MJ application have been evaluated after two
seasons, although for mature trees it has been shown that the effect of a MJ treatment can last for several years (Erbilgin et al., 2006; Zhao et al., 2010).

Here, we explore whether increasing defensive traits through MJ application at the nursery stage can be an efficient way to protect seedlings against this harmful forest pest in the field. We performed a field experiment with the two most commonly planted conifers in both northern (Sweden) and southern Europe (Spain). We investigated the effect of concentration and number of applications of MJ on chemical defensive traits, seedling growth and weevil damage during two growing seasons after planting. We aimed to gain insight into the viability of MJ application in the nursery to protect forest plantations against the pine weevil at field. The wide contrasts in ecological conditions between Spain and Sweden, with extreme differences not only in temperature and light conditions but also in forest functioning and insect behavior, should result in a high level of generality of the results of this study.

2. Material and Methods

2.1. Plant material

Four conifer species were used in this study: Maritime pine (Pinus pinaster Ait.) and Monterrey pine (Pinus radiata D. Don) as representatives of conifers widely planted in southern Europe, and Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as the most common conifers in the forests of northern Europe. All four species can be severely damaged by the pine weevil when planted in conifer clear-cuts (Örlander and Nilsson, 1999; Zas et al., 2011).

Seedlings of Maritime pine and Monterrey pine were provided by a commercial Spanish nursery (Norfor Nursery Ltd., Pontevedra, Spain; viverofigueirido@norfor.es). Monterrey pine seedlings were derived from seeds collected in the coast of Asturias (NW Spain) whereas those of Maritime pine came from the Massif des Landes (France). Both provenances are commonly used for reforestation in the area of the Spanish field experiment. Seeds of both species were sown in CETAP40® containers (P. radiata, container volume 125 cm³) and PLASNOR® containers (P. pinaster, container volume 150 cm³) in August 2010, which were kept outdoors and watered and fertilized following conventional nursery protocols.

The two northern species were represented by one-year-old containerized seedlings (container volume 50 cm³) and were acquired from a Swedish commercial nursery (Sjögränd nursery, Bergvik Skog AB, Uddeholm, Sweden). Seedlings of both species were derived
from seeds of central Swedish origin, and thus suitable for the area of the Swedish field experiment. Seeds were sown in March 2010, and seedlings were freeze stored from December 2010 to May 2011, when they were taken outdoors, transplanted into HIKO® trays (container volume 90 cm3), and then kept on sandy ground and automatically watered daily.

2.2. Methyl jasmonate treatments

Trays of the four species were sprayed with different treatments of methyl jasmonate (MJ) in the spring of 2011. Treatments differed in the concentration of MJ and in the timing of the MJ applications. Methyl jasmonate (Sigma-Aldrich Ref #39924-52-2) was used for preparing 5, 10, and 25 mM MJ emulsions in 2.5% ethanol in deionized water. MJ was first dissolved in the ethanol and water was then added. The solution was shaken vigorously until a uniform milky emulsion was obtained, and then transferred to hand-sprayers, which were also shaken in between spraying each tray.

Treatments were applied twice, roughly 4 and 2 weeks before planting out in the field experiments (30 and 15 days before planting in the case of P. pinaster and P. radiata and 27 and 13 days before planting in the case of P. sylvestris and P. abies). At each application date, approximately 10 ml of the MJ emulsions, differing in MJ concentration, was uniformly distributed with a hand-sprayer over the nursery trays, which included 40 seedlings each. Six treatments, differing in the concentration and timing of the MJ applications, were applied to the four species (see Table A1 in Appendix A). The main treatments (T1, T2, T3 and T4) consisted of a control (seedlings sprayed only with the carrier solution) and applications of 5, 10 and 25 mM MJ at both application dates. Single applications of the highest concentration treatment (25 mM MJ) in just one of the two application dates were also conducted (treatments T5 - 4 weeks before planting, and T6 - 2 weeks before planting).

2.3. Field experimental design

Two field experiments were established with the treated seedlings, one in Spain, including P. pinaster and P. radiata, and the other in Sweden, including P. sylvestris and P. abies. Both experiments were established in recent conifer clear-cuts, in which pine weevil damage was likely to occur. The two experiments followed a randomized block design with 8 blocks, with each block including 10 plants of each of the six treatments (T1-T6), for both the species of each trial. The 10 plants were planted together in a single row of 10 plants
The Spanish field trial was established on 12-13 May 2011 in Torroña (Pontevedra, NW Spain, 41° 58’ 17” N, 8° 51’ 3” W, Altitude = 410 m a.s.l.) in a granitic area of sandy soils dominated by pine forest of both Maritime pine and Monterrey pine (see overall view in Appendix A, Figure A1). The experimental site was previously occupied by a mature stand of Maritime pine, which had been clear cut in October-December 2010. One-direction soil ripping was made following the slope of the site just before planting.

The Swedish trial was established on 21 July 2011 at Marma, about 70 km N of Uppsala (Sweden, 60° 29’ 5” N, 17° 26’ 50” E, Altitude = 36 m a.s.l.) (see overall view in Appendix A, Figure A2). The site was located on almost completely flat sand sediment. The previous stand of predominantly Scots pine had been clear cut in December 2009, followed by soil scarification by disc-trenching in July 2010.

In order to have seedlings unaffected by pine weevil feeding, two additional treatments in which seedlings were physically protected against the pine weevil were also included in the experimental design of the two field trials. Extra plants treated twice with the control (treatment T7) or the 25 mM solutions (treatment T8) were established and protected with a plastic shield (Snäppskyddet, Panth-Produkter AB, Östhammar, Sweden) at the time of planting. These two extra treatments were only included in blocks 1-4. In the Spanish trial the efficacy of these barriers was not complete and some seedling damage was observed early on; plants were then further protected by coating the stems with Conniflex®, which is a fine sand (particle size 0.2 mm) embedded in an acrylate dispersion that remains flexible after drying (Nordlander et al., 2009). Conniflex® was applied in March 2012, only in the Spanish trial.

2.4. Assessments

Seedling size (total height and stem basal diameter) was assessed in all planted seedlings in the two experiments just before planting, and seedling size and weevil damage (debarked area) were assessed at the end of the first and second growing seasons after planting (17 October 2011 and 12 December 2012 in the Spanish trial and 27 September 2011 and 11 October 2012 in the Swedish trial). On both dates we also recorded whether or not each seedling had been attacked by the weevil, as a further binary variable. Stem girdling and seedling mortality were also recorded as binary variables in all planted seedlings. A seedling was classified as girdled when there was a continuous feeding scar all around the stem,
irrespective of the height of the stem where this scar was found. Dead seedlings without feeding scars were considered to be dead due to other causes.

Because seedling size varied greatly between the two field trials, we used slightly different procedures for weevil damage evaluations. In the Swedish trial, where seedlings were generally smaller, debarked area was estimated by inspecting down to the base of the stem and using graduate millimeter templates as in Nordlander et al. (2011), with 0.1 cm² being the smallest area recorded. In the Spanish trial, the debarked area during the first growing season was estimated by measuring the length of the scars in four longitudinal transects along the entire stem, as in Moreira et al. (2009). The large size of the plants impeded the use of this procedure in the 2012 assessment. On this occasion we used a subjective assessment similar to that used by Zas et al. (2006). Each seedling stem was visually divided into 10 equally-sized parts, in each of which weevil damage was recorded using a five-level score (0, 0-25%, 26-50%, 51-75% and 76-100% of the bark surface debarked by the weevils). Debarked area (in cm²) was estimated from these values by assuming that the stems have a cone shape with basal stem diameter and total seedling height defining the basic cone parameters.

2.5. Sampling and chemical analyses

Twenty extra seedlings of each of the six main treatments (T1-T6) and species, that were kept in the trays outdoors in the respective nurseries, were sampled for chemical analyses (Table A1) approximately 3 weeks after the field experiments were established (31 May 2011 for P. pinaster and P. radiata and 12 July 2011 for P. sylvestris and P. abies), i.e., during the period of intense weevil feeding. Seedlings were thus sampled around 7 and 5 weeks after the first and second MJ applications, respectively. Needles and stems were carefully separated and immediately frozen at -30 ºC. Two main quantitative chemical defensive traits were determined in each of these tissues, the concentration of non-volatile resin and the concentration of total polyphenolics. Chemical analyses were performed at the Misión Biológica de Galicia (Pontevedra, Spain).

Non-volatile resin was extracted with hexane in an ultrasonic bath for 15 min at 20ºC and then for 24 hours at room temperature. After filtering the extract (Whatman GFF, Whatman Int. Ltd, Maidstone, Kent, UK) and repeating the extraction again, the concentration of non-volatile resin was estimated gravimetrically and expressed as mg of non-volatile resin g⁻¹ dried weight (d.w.) of the given tissue. The residual material after the extraction of non-volatile resin was then used for total polyphenolics determination. Total
polyphenolics were extracted with aqueous methanol (1:1 vol:vol) in an ultrasonic bath for
15 min, followed by centrifugation and subsequent dilution of the methanolic extract. Total
polyphenolic content was determined colorimetrically by the Folin-Ciocalteu method in a
Biorad 650 microplate reader (Bio-Rad Laboratories Inc., Philadelphia, PA, USA) at 740 nm,
using tannic acid as standard, and referred to the vegetal tissue in a d.w. basis (see more
details in Moreira et al., 2009). A total of 960 (20 plants × 4 species × 6 treatments × 2
tissues) samples were analyzed (Table A1).

2.6. Statistical analyses
Seedling height, diameter and weevil damage (debarked area) in the field were analyzed
independently for each species and year fitting a two-way mixed model in which the effect of
MJ treatments was treated as a fixed factor and the blocks and their interaction with the MJ
treatments were considered random factors. This allowed us to account for the eventual
autocorrelation of the 10 contiguous plants of the same treatment within each block (i.e., the
experimental plots), and resulted in the appropriated denominator degrees of freedom for
testing the effect of the MJ treatments. Debarked area was log transformed to achieve
residual normality in all species and years. Heterogeneous residual variance models were
fitted when the Levene test identified significant differences in the residual variance among
MJ treatments. Least square means were estimated from the mixed models and used for
multiple comparisons among treatments. Specific contrasts testing for significant differences
between specific MJ treatments and the control were also performed. All general linear
mixed models were fitted using restricted maximum likelihood (REML) methods with the
MIXED procedure of the SAS System (Littell et al., 2006).
Binary variables (i.e., mortality, stem girdling, and whether the seedlings were
attacked or not) were analyzed with a generalized mixed model similar to the one described
above. The models were fitted with the GLIMMIX procedure of SAS (Littell et al., 2006),
assuming a binary residual distribution and a logit link function.
The effect of the application of MJ on the non-volatile resin and total polyphenolics in
the stem and needles was analyzed with a repeated measures mixed model in which the MJ
treatments, the plant species and their interaction were considered between-subject fixed
factors, and the plant tissue (stem or needles) and its interaction with MJ and species as
within-subject fixed factors. An unstructured covariance model with independent within-
subject residual variance for each tissue type was used.
For all the studied traits (i.e., chemical traits, seedling size and weevil damage) two different analyses were performed. First we tested whether the different MJ concentrations significantly affected these traits analyzing a sub-dataset that included only the treatments T1 (0 mM), T2 (5 mM), T3 (10 mM) and T4 (25 mM), in which MJ was applied twice 4 and 2 weeks before planting (Table A1). We then analyzed whether there were differences among the two single and the double application of MJ, only analyzing the treatments T1 (control), T5 (25 mM applied 4 weeks before planting), T6 (25 mM applied 2 weeks before planting), and T4 (25 mM applied twice 4 and 2 weeks before planting) (Table A1).

3. Results

3.1. Weevil damage at field

Pine weevil pressure was high in the two field trials and lasted for at least two growing seasons (Table 1). During the first year, the weevil fed on between 68 and 85% of the planted seedlings, with a mean debarked area of attacked seedlings ranging from around 1 cm² in *P. sylvestris* and *P. abies* in the Swedish trial to around 3 and 5 cm² in *P. radiata* and *P. pinaster*, respectively, in the Spanish trial (Table 1). Weevil damage caused stem girdling in 12-22% and 23-30% of the seedlings planted in the Swedish and the Spanish trials respectively (Table 1). Almost all the girdled seedlings of the Swedish trial died, whereas around 70% of the girdled seedlings of the Spanish trial were able to survive by resprouting below the girdling site (Table 2). Accordingly, mortality rates due to weevil damage were greater in the Swedish than in the Spanish trial, especially in *P. pinaster* (Table 2).

During the second growing season, the pine weevil pressure remained high in the Spanish trial, with 73-91% of the seedlings attacked by the weevil and similarly high mean values of debarked area to the first season. Despite this, the percentage of girdled seedlings was much reduced during the second growing season, probably because of the increase in basal stem diameter (Table 1). On the contrary, in the Swedish trial, the damage intensity was largely reduced during the second growing season, but in this case it did continue to provoke stem girdling and seedling mortality in a high percentage of seedlings (Table 1). At the end of the two first growing seasons after planting, overall cumulative mortality due to weevil damage was 16, 24, 23 and 33% in *P. pinaster*, *P. radiata*, *P. sylvestris* and *P. abies*, respectively.

MJ application in the nursery effectively reduced the damage caused by the pine weevil during both the first and the second growing seasons after planting (Table 2). During
the first season, although MJ application significantly reduced the percentage of attacked
seedlings only in *P. pinaster*, it significantly reduced the debarked area of wounded seedlings
in all the four studied species (Table 2, Figure 1). The reduction of the debarked area was
proportional to the concentration used in the MJ treatments in all species, and in most of the
cases only the highest concentration yielded significant results (Figure 1). In the case of the
pine species, the damage on seedlings treated twice with the highest concentration of MJ was
reduced to less than half of that on control plants, whereas the reduction of damage in spruce
was around 38% (Figure 1) and it was just marginally significant. The reduction of the
debarked area of attacked seedlings was significant only when the 25 mM MJ solution was
applied twice, except in *P. pinaster* for which the single early application (4w before
planting) also significantly reduced the debarked area during the first growing season
compared to control plants (Figure 2, see also Table B1 in Appendix B).

The reduction in weevil damage was translated into a reduction in the percentage of
girdled seedlings and mortality rates (Table 2, Figure 1). In control plants the percentage of
seedlings that became girdled during the first growing season varied between 22% in *P.
sylvestris* and 38% in *P. pinaster*, whereas mortality rates varied between 10% in *P. pinaster*
and 24% in *P. abies*. In MJ treated plants these values were strongly reduced in the four
species although in the case of stem girdling the effect was only significant for the three pine
species, and in the case of mortality only for *P. sylvestris* (Table 2, Figure 1). The effect of
MJ on stem girdling and mortality was again dose-dependent and only the highest
concentration applied twice led to a statistically significant reduction of these traits in
comparison with control plants (Figure 1, Figure 2, Table B1). Following two 25 mM MJ
treatments, only around 10% of *P. pinaster, P. radiata* and *P. abies* seedlings were girdled,
while for *P. sylvestris* girdling was virtually absent; mortality rates were reduced to 3, 7 and
1% in *P. pinaster, P. radiata* and *P. sylvestris*, respectively, but only to 16% in *P. abies*.

During the second growing season, the MJ treated seedlings continued to suffer less
new pine weevil damage compared with untreated control seedlings, but the effect was not as
clear and consistent as during the first year (Table 2, see also Figure C1 in Appendix C).
Weevils still preferred untreated control plants of *P. pinaster* to plants treated twice with 25
mM MJ (Figure C1). The effect of MJ on the mean debarked area of attacked seedlings
during the second growing season was significant for the three pines (Table 2), but the
reduction of debarked area was only evident for the highest concentration treatment (25 mM)
(Figure C1). Consequently, the percentage of girdled seedlings was lower in plants treated
twice with 25 mM MJ, although the effect was only statistically significant for *P. sylvestris*
The MJ application at the nursery stage reduced the cumulative mortality rates after two complete growing seasons in the field. The trend was positive for all species and statistically significant for *P. radiata* and *P. sylvestris*. The double application of 25 mM MJ 4 and 2 weeks before planting was the treatment which most strongly reduced mortality rates (Figure 2, Figure C1). Results were especially promising in *P. sylvestris* where the cumulative mortality rates after two growing seasons dropped from 39% in control plants to just 7% (Figure C1). This effect was mainly due to the MJ treatments reducing the percentage of seedlings seriously damaged (Figure 3).

3.2. Growth losses

At the time of planting, i.e., 4 and 2 weeks after the first and second application of MJ in the nursery, the size of the MJ treated plants (total height and stem basal diameter) was significantly lower than that of control plants in all studied species except in spruce, for which the difference in total height was not statistically significant (see Figure C2 in Appendix C). The general trend was that the higher the concentration of MJ applied, the greater the observed reduction in seedling size was observed. The reduction in seedling height after the double application of the highest concentration of MJ (25 mM) was especially large in *P. sylvestris* (43%) and *P. radiata* (35%) and somewhat lower in *P. pinaster* (22%) and *P. abies* (8%) (Figure 4).

Once in the field, the reduction of plant size due to MJ application tended to diminish over time (Figure 4, see also Figure C3 in Appendix C). By the end of the second growing season, height growth losses of MJ-treated seedlings were only significant in *P. radiata* and *P. sylvestris* (Figure C3), and even for these species treated seedlings were just 10 and 15% shorter than control seedlings, compared with the 43 and 35% reduction in size at the time of planting (Figure 4). This decrease in growth losses with age was probably mainly due to the reduction of weevil damage in MJ treated plants. When comparing the growth of control and MJ treated seedlings physically protected against the pine weevil (non-attacked seedlings, treatment 7 and 8), we found that the reduction in height due to MJ remained highly significant in the three pine species two growing seasons after planting (Figure 5). Overall these results suggest that, in unprotected seedlings, the growth benefits of being less damaged compensated the growth loss due to the application of MJ per se.

3.3. Chemical defensive responses
The exogenous application of MJ strongly increased the two studied chemical resistance traits (non-volatile resin and total polyphenolics) but the effect was not the same in all four conifer species (significant MJ × Species interaction) and differed between needles and stems (significant MJ × Tissue and MJ × Tissue × Species interactions) (Table 3). In the case of non-volatile resin, the application of MJ significantly increased its concentration in the four species and the two tissues, and the effect was generally proportional to the concentration used (Figure 6a, see also Figure C4a in Appendix C). Non-volatile resin concentration in the stems of seedlings treated twice with the highest concentration of MJ (25 mM MJ applied 7 and 5 weeks before sampling) was 2.0, 2.7, 1.5 and 2.9 times that of control seedlings for *P. pinaster*, *P. radiata*, *P. sylvestris* and *P. abies*, respectively (Figure 6a). This treatment also more than doubled the non-volatile resin in the needles of the three pine species, but the effect was much lower in the needles of the spruce (Figure C4a). Single applications of 25 mM MJ also significantly increased the concentration of non-volatile resin in the stems but the increments were significantly smaller than after the double application in the four studied species (Figure 2). No significant differences were observed when comparing the effects of the early and late applications, except in the case of *P. radiata*, for which the effect of MJ was stronger when applied 5 weeks before sampling than when applied 7 weeks before sampling (Figure 2).

MJ also significantly increased the concentration of total polyphenolics in both stems and needles (Table 3). In the case of total polyphenolics in the needles, the effect was significant for all four species (Figure C4b), but MJ only significantly increased stem total polyphenolics in *P. pinaster* and *P. radiata* (Figure 6b). Following the double application of 25 mM MJ, concentrations were 1.4 and 2.1 times that of control plants, respectively (Figure 6b), and similar responses were in fact also observed following just a single application of the same concentration (Figure 2). The treatments applying lower concentrations of MJ only significantly increased the total polyphenolics in the stems of *P. radiata* (Figure 6b).

In general the increase in chemical defences was linearly related with the decrease in weevil feeding at field. We found a negative and strong linear relationship between the concentration of non-volatile resin in the stems and the debarked area at field in *P. pinaster*, *P. sylvestris*, and *P. abies*, but not in *P. radiata* (Figure D1). The concentration of total polyphenolics in the stems was also significantly related to the debarked area in the case of *P. pinaster*.

4. Discussion
The results of this study point to a new method to protect forest plantations against pests. Application of MJ in the nursery some weeks before planting was effective in reducing weevil damage under real field conditions in all four conifer species, and the protection was long lasting, at least up to two seasons after planting. The mechanisms of resistance against pine weevils are still not completely understood but different terpenoids and phenolics are known to be involved either in weevil attraction (Nordlander, 1991; Blanch et al., 2012) and/or in deterring weevil feeding (Nordlander, 1991; Borg-Karlson et al., 2006), and both non-volatile resin and total polyphenolics, as determined here, have been related to pine weevil resistance (Moreira et al., 2009; Carrillo-Gavilán et al., 2012). The parallelism between the increases of these substances and the reduction of weevil damage through MJ application suggests that the protective effect of MJ was related to an increase of the chemical defences of the seedlings.

Chemical elicitors are becoming more popular for protecting agricultural crops against pests and diseases (Rohwer and Erwin, 2008; Walters and Fountaine, 2009) but they are still in an experimental phase in forestry and to our knowledge they have never been commercially used for protecting forest plantations or tree seedlings in the nursery. That MJ reduced weevil feeding through an increase in plant defensive traits has been reported before (Heijari et al., 2005; Moreira et al., 2009; Sampedro et al., 2011b), but the important result found here is that this effect remained significantly and quantitatively important under real field conditions. Furthermore, although the practical effectiveness varied depending on the species, the general results were consistent across sites and species, in spite of the huge environmental differences between the two field trials, which represent the northern and southern limits of *H. abietis*’ range. This is particularly relevant as climate is known to strongly influence the life cycle of *H. abietis*, the timing of its feeding activity and the amount of damage it causes (Tan et al., 2010; Inward et al., 2012), as well as, of course, the phenology and growth rates of the tree species (e.g., Nobis et al., 2012). By being consistent across such contrasting environmental conditions, our results suggest that the response to the MJ treatments is rather general for *H. abietis*.

The results were especially promising in the three pine species, in which the reduced feeding damage on MJ treated seedlings was translated into a reduced probability of stem girdling and thus improved seedling performance. Mortality was drastically reduced in the case of *P. sylvestris*, dropping from nearly 40% in control plants to less than 7% in MJ treated plants, well below the economic threshold expected for a successful man-made plantation. In the other studied species, the results showed the same trend but the reduction of
weevil damage and seedling mortality was relatively smaller, especially in *P. abies*. Further research is needed to fine tune the application procedure in order to optimize its effect in this species.

4.1. Increase of chemical defensive traits

The observed increase in chemical defensive traits after MJ application was consistent with previous findings reporting the activation of both the phenylpropanoid and terpenoid pathways in different conifer species (Heijari *et al.*, 2005; Moreira *et al.*, 2009; Zhao *et al.*, 2010; Schiebe *et al.*, 2012). The concentration of non-volatile resin, which is highly correlated with the diterpene fraction of the oleoresin (Sampedro *et al.*, 2011b), was increased in all four species and in both the needles and the stems. Previous studies have shown that MJ increased the concentration of total resin acids in the needles and xylem of Scots pine juveniles (Heijari *et al.*, 2005), and in the stems of Maritime pine (Moreira *et al.*, 2009) and Monterrey pine (Moreira *et al.*, 2012b), although in all these cases the minimum concentration of MJ needed to provoke significant changes in the non-volatile resin was much higher (80 or 100 mM) than that used here. In general we found that the increase in non-volatile resin in the stems and needles was proportional to the concentration of MJ applied, and even the lowest concentration (5 mM) applied twice was enough to significantly increase the non-volatile resin in the two tissues. As observed in other studies (Moreira *et al.*, 2009; Carrillo-Gavilán *et al.*, 2012), the significant relationship between the increase of non-volatile resin in the stems and the weevil feeding rate at field in three of the four species suggest a relevant role of this defensive trait in seedling resistance against this insect.

Total polyphenolics were also increased after MJ application, especially in the needles where the MJ effect was significant in all four studied species. Increased polyphenolics after MJ application has been reported before in different conifers (Sampedro *et al.*, 2011a; Schiebe *et al.*, 2012) but the effect is usually not as clear and dose-dependent as that observed for terpenoids (Erbilgin *et al.*, 2006; Moreira *et al.*, 2009). Focusing on the stems, only Maritime pine and Monterrey pine responded to MJ by increasing the total polyphenolics concentration, but this increase was only related with a reduction of weevil feeding in the case of Maritime pine.

4.2. Single vs double application of MJ

In contrast with previous studies (Gould *et al.*, 2009), the repeated application of MJ was much more effective in reducing pine weevil damage than single applications. The
pattern of response mirrored that observed for chemical defensive traits but in this case, the
effect of the single applications was statistically significant. Single applications of 25 mM MJ
significantly increased the non-volatile resin in the stems of all species, although not as much
as the double application, but this increase was generally not translated into a significant
reduction of weevil damage at field conditions. With the exception of just a few cases, only
the double application of MJ was effective protecting seedlings against the pine weevil.
Repeated applications of MJ at low concentration rates did not provoke, however, stronger
defensive responses in Monterrey pine seedlings against the fungus Diplodia pinea than
single applications of MJ (Gould et al., 2009). In that study, the application of MJ at
concentration of just 1 mM was enough to significantly increase the concentration of some
monoterpenes in the stems. Similarly low concentration of MJ increased the mono and
diterpene fraction in the stems of Norway spruce (Martín et al., 2002). It seems that the
sensitivity to MJ may depend on other factors, among which plant ontogeny (Erbilgin and
Colgan, 2012), plant tissue and part (Moreira et al., 2012b), plant genotype (Zeneli et al.,
2006; Moreira et al., 2013) and phenology (Moreira et al., 2012a) may be especially relevant.
It may therefore be significant that in this study we managed young seedlings that are likely
to be more sensitive to external application of MJ than older and more lignified saplings or
mature trees.

4.3. Lasting effect

Planted seedlings frequently face a high risk of being killed by pine weevils for
several years after planting (Örlander and Nilsson, 1999). Specifically, in the two field trials
of the present study, weevil damage was very intense during the two first seasons after
planting, especially in the Spanish trial, where weevil damage was as intense during the
second growing season as during the first. Seedlings treated with MJ remained protected
during the second growing season as revealed by the reduction in the debarked area of
attacked seedlings and/or the reduction of the percentage of girdled seedlings. The response
to MJ was, however, not as clear as during the first growing season, and was significant in
the three pine species but not in Norway spruce. Previous research with young Norway
spruces indicates that the response to MJ in terpenoid-related traits reaches its maximum
around 15-25 days after application and then progressively declines from then on (Martín et
al., 2002). The decay time of this induced response remains largely unknown, but results
from experiments on mature trees indicates that the accumulation of terpenoids after MJ
application may last much longer, and differences in terpenoid concentration between MJ and
control trees may remain significant more than one year after MJ application (Erbilgin et al., 2006; Zhao et al., 2010). Nonetheless the results indicate that two seasons after planting the MJ treated seedlings were still being consumed at a lower rate by the weevil, suggesting that the MJ effect remained protecting the seedlings for at least this length of time. The results during the second season differed again depending on the species and field trial. In the Spanish trial, where the damage level remained very high during the second growing season, the surviving MJ treated seedlings were less damaged than the control ones but this was not translated into a lower percentage of girdled seedlings. On the contrary, Scots pine seedlings treated with MJ were less frequently girdled during the second growing season. These differences can be explained by the huge differences in seedling size during the second growing season between the Spanish and the Swedish seedlings. The Spanish seedlings were much thicker, and thus, it was less likely that the debarked area would entirely surround the stem circumference (Thorsén et al., 2001).

4.4. Growth losses

One of the most frequent limitations for the practical use of MJ in crop protection is the negative effect on growth and reduced plant fitness in the absence of damage (Holopainen et al., 2009; Moreira et al., 2012a). Reduced growth of MJ treated conifer seedlings has been repeatedly observed in several short-term experiments (Heijari et al., 2005; Krokene et al., 2008; Sampedro et al., 2011a). Based on the results of the present work, these growth reductions appear to be, however, a transient effect that tend to diminish with time and became almost negligible after two seasons. Weevil damage has been shown to have a negative impact on seedling growth (Sampedro et al., 2009), and so by reducing damage levels, growth losses due to weevil damage were lower in MJ treated plants. Indeed, the net effect of MJ on growth was negligible in the presence of weevil damage, although it remained significant after two seasons if seedlings were physically protected against the weevil. Furthermore, even if growth losses remain significant after some years, the application of MJ may still be recommended because of its positive effect on seedling survival (Krokene et al., 2008).

4.5. Towards practical applications

The pine weevil is among the most harmful handicaps for regenerating conifer forests all around Europe, especially in northern countries where both the huge extensions of continuous conifer forests and the way they are managed - mainly regenerated by planting...
after clear cutting - favor the maintenance of high population levels of the pine weevil and severe damage on the regenerate (Nordlander et al., 2011). Since the application of insecticides (mainly permethrin) was limited in Europe in the early 2000s, there has been a strong research effort to search for alternative environmental-friendly ways of protecting seedlings (e.g., Zas et al., 2008; Nordlander et al., 2009; Manák et al., 2013). MJ treatments may be one option since the main effect of MJ application is to trigger the innate resistance capacity, and considering that MJ is a volatile compound that do not remain on the plants for long, we do not expect any problematic environmental hazard. However this should be formally tested before a massive utilization of MJ in the nurseries.

Nowadays a combination of silvicultural measures, insecticides and direct physical seedling protection is applied in northern Europe on a massive scale to limit weevil damage, but all these measures inevitably increase the economic costs of the regeneration process (Petersson and Örlander, 2003; Nordlander et al., 2011). MJ treatments may become a cost-effective alternative since acceptable levels of seedling survival were achieved for all species, except for P. abies, at a much lower cost than the currently available physical seedling protections.

We would expect a similar effect of the treatment when scaling up from a field experiment to a setting where all seedlings are treated, since feeding on seedlings are not essential for the pine weevils but other food sources on the clear-cut are used to a large extent (Wallertz et al., 2006). The defensive response triggered by MJ seemed to be general, being effective at protecting seedlings of different conifer species under very different environmental conditions, from the southern to the northern extremes of the pine weevil distribution. Additionally, given the numerous examples of previous works reporting increased resistance of MJ treated seedlings against other biotic threats (see references in the Introduction), the generality of the responses may be extended to different biotic risks. Thus, the application of MJ at the nursery stage appears to have the potential to become an environmentally-friendly and cost-effective alternative way to fight against this harmful forest pest. However further research is necessary to properly evaluate costs and environmental impacts before MJ can become operational on a broad scale.

5. Acknowledgements

We thank Henrik Nordenhem, Anders Eriksson, Rocio Campanó for help with the field work, and Luz Pato for help with chemical analyses. We also thank the CMVMC of Santa Mariña do Rosal for providing the land for establishing the Spanish experiment. We are also very
grateful for the exhaustive language editing by David Brown. Two anonymous reviewers helped to improve the manuscript. The work in Sweden was funded by the Swedish Foundation for Strategic Research (Parasite Resistant Tree project) and by the Swedish forestry sector (The Swedish *Hylobius* Research Program). In Spain, the work was supported by the National Research Grant AGL2012-18724 (Compropin Project). LS received financial support for postdoctoral program from the Spanish National Institute for Agriculture and Food Research and Technology (INIA).

6. References

Nordlander, G., Nordenhem, H., Hellqvist, C., 2009. A flexible sand coating (Conniflex) for the protection of conifer seedlings against damage by the pine weevil Hylobius abietis. Agricultural and Forest Entomology 11, 91-100.

Supplemental Material

Appendix A
Details of methyl jasmonate treatments and field trials, including photographs of the experimental sites and the treated seedlings.

Appendix B
Supplementary results: Specific contrasts testing the effect of single and double application of 25 mM methyl jasmonate.

Appendix C
Supplementary results: Effect of methyl jasmonate treatments on weevil damage during the second growing season, on seedling growth at different times and on chemical defenses in the needles.

Appendix D
Supplementary results: Relationships between chemical defences and weevil damage at field.
Table 1. Summary data of field performance during the first and second growing seasons of seedlings of four conifer species planted in two clear-cuts, one in Spain (*P. pinaster* and *P. radiata*) and one in Sweden (*P. sylvestris* and *P. abies*), naturally attacked by the pine weevil (*H. abietis*). Seedling growth (mean ± s.e.) and pine weevil damage, including debarked area by weevil feeding (mean ± s.e.), risk of being attacked, and percentage of stem girdling and mortality rates (percentage of planted or surviving seedlings for 1st and 2nd season) are shown. Data are overall means for each site and species; N = 480 seedlings. Presented values are based on data from all seedlings except those with physical protection, i.e., T1-T6 (see Methods for details).

<table>
<thead>
<tr>
<th>Season</th>
<th>Spanish trial</th>
<th>Swedish trial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. pinaster</td>
<td>P. radiata</td>
</tr>
<tr>
<td>Mean height (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>37.7 ± 0.5</td>
<td>31.1 ± 0.5</td>
</tr>
<tr>
<td>2nd</td>
<td>102.1 ± 1.2</td>
<td>103.5 ± 1.5</td>
</tr>
<tr>
<td>Mean basal diameter (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>6.1 ± 0.06</td>
<td>5.6 ± 0.07</td>
</tr>
<tr>
<td>2nd</td>
<td>21.8 ± 0.30</td>
<td>20.8 ± 0.35</td>
</tr>
<tr>
<td>Attacked seedlings (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>79.8</td>
<td>68.3</td>
</tr>
<tr>
<td>2nd</td>
<td>91.1</td>
<td>72.9</td>
</tr>
<tr>
<td>Girdled seedlings (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>23.1</td>
<td>30.0</td>
</tr>
<tr>
<td>2nd</td>
<td>1.4</td>
<td>6.2</td>
</tr>
<tr>
<td>Mortality due to pine weevil (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>4.4</td>
<td>10.4</td>
</tr>
<tr>
<td>2nd</td>
<td>5.2</td>
<td>15.8</td>
</tr>
<tr>
<td>Other mortality (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>4.2</td>
<td>5.0</td>
</tr>
<tr>
<td>2nd</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean debarked area (cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>4.9 ± 0.3</td>
<td>2.9 ± 0.2</td>
</tr>
<tr>
<td>2nd</td>
<td>6.2 ± 0.3</td>
<td>3.3 ± 0.2</td>
</tr>
</tbody>
</table>

1 Only living seedlings were considered.
2 Percentage values for the first season were estimated upon the total number of planted seedlings whereas those for the second season were estimated upon the surviving seedlings from the previous season.
3 Debarked area estimations are not comparable between sites due to differences in methodology (see main text for description).
Table 2. Results of the generalized and linear mixed models showing the effect of the application of methyl jasmonate (0, 5, 10 or 25 mM MJ) on weevil damage and plant growth of seedlings of four conifer species planted in two clear-cuts, one in Spain (*P. pinaster* and *P. radiata*) and one in Sweden (*P. sylvestris* and *P. abies*), naturally attacked by the pine weevil (*H. abietis*). Independent analyses for the first and second growing seasons are shown. Results are based on yearly data so that for the second growing season we are showing the results for new damage during that season, except in the case of mortality for which we show the cumulative mortality after two growing seasons. All treatments were applied twice, 4 and 2 weeks before planting. F ratio and associated probability levels for the main effect of the MJ treatment are shown. Significant p values (p < 0.05) are typed in bold. Dash symbols indicate that the generalized mixed model failed to converge.

<table>
<thead>
<tr>
<th></th>
<th>Spanish trial</th>
<th></th>
<th>Swedish trial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. pinaster</td>
<td>P. radiata</td>
<td>P. sylvestris</td>
<td>Picea abies</td>
</tr>
<tr>
<td></td>
<td>F, P>F</td>
<td></td>
<td>F, P>F</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>3.0 0.055</td>
<td>13.2 <0.001</td>
<td>40.7 <0.001</td>
<td>6.5 0.003</td>
</tr>
<tr>
<td>2012</td>
<td>0.2 0.911</td>
<td>4.0 0.022</td>
<td>6.2 0.004</td>
<td>2.4 0.093</td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>7.5 0.001</td>
<td>8.8 0.001</td>
<td>0.3 0.797</td>
<td>0.1 0.933</td>
</tr>
<tr>
<td>2012</td>
<td>0.1 0.966</td>
<td>4.4 0.016</td>
<td>1.4 0.273</td>
<td>0.4 0.735</td>
</tr>
<tr>
<td>Probability of being attacked</td>
<td>3.2 0.046</td>
<td>1.4 0.286</td>
<td>0.1 0.980</td>
<td>0.6 0.656</td>
</tr>
<tr>
<td>2012</td>
<td>1.9 0.168</td>
<td>0.5 0.723</td>
<td>1.6 0.221</td>
<td>0.3 0.839</td>
</tr>
<tr>
<td>Probability of stem girdling</td>
<td>3.4 0.039</td>
<td>2.4 0.096</td>
<td>4.1 0.020</td>
<td>1.1 0.355</td>
</tr>
<tr>
<td>2012</td>
<td>- -</td>
<td>1.2 0.353</td>
<td>1.6 0.221</td>
<td>0.8 0.491</td>
</tr>
<tr>
<td>Cumulative mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>- -</td>
<td>1.2 0.334</td>
<td>4.0 0.021</td>
<td>1.0 0.416</td>
</tr>
<tr>
<td>2012</td>
<td>1.1 0.362</td>
<td>1.8 0.174</td>
<td>3.5 0.034</td>
<td>1.3 0.289</td>
</tr>
<tr>
<td>Debarked area (^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>4.8 0.011</td>
<td>3.1 0.051</td>
<td>4.8 0.011</td>
<td>2.5 0.086</td>
</tr>
<tr>
<td>2012</td>
<td>4.1 0.019</td>
<td>5.0 0.009</td>
<td>3.4 0.037</td>
<td>0.3 0.859</td>
</tr>
</tbody>
</table>

\(^1\) Debarked area was log-transformed to achieve normality. Heterogeneous residual variance models were fitted when needed.

Table 3. Results of the repeated measures mixed model for the statistical analysis of major chemical defences (non-volatile resin and total polyphenolics) in two plant tissues (stem and needles) of seedlings of four conifer species (*P. pinaster*, *P. radiata*, *P. sylvestris* and *P. abies*) treated twice with different concentrations of methyl jasmonate (0, 5, 10 or 25 mM MJ). Plant tissue was considered a within subject factor, whereas species and MJ treatment were considered between subject factors. Degrees of freedom of the numerator (DFnum) and denominator (DFden), F-ratios and associated probability values are shown. Significant p values (p < 0.05) are typed in bold. All treatments were applied twice, 7 and 5 weeks before sampling for chemical analyses.

<table>
<thead>
<tr>
<th>Effect</th>
<th>DFnum</th>
<th>DFden</th>
<th>Non-volatile resin</th>
<th>Total polyphenolics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>P > F</td>
</tr>
<tr>
<td>Across subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species (SP)</td>
<td>3</td>
<td>143</td>
<td>83.2</td>
<td><0.001</td>
</tr>
<tr>
<td>MJ treatment (MJ)</td>
<td>3</td>
<td>143</td>
<td>105.0</td>
<td><0.001</td>
</tr>
<tr>
<td>SP x MJ</td>
<td>9</td>
<td>143</td>
<td>3.6</td>
<td>0.004</td>
</tr>
<tr>
<td>Within subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue</td>
<td>1</td>
<td>141</td>
<td>1032.9</td>
<td><0.001</td>
</tr>
<tr>
<td>SP x Tissue</td>
<td>3</td>
<td>141</td>
<td>31.1</td>
<td><0.001</td>
</tr>
<tr>
<td>MJ x Tissue</td>
<td>3</td>
<td>141</td>
<td>0.9</td>
<td>0.459</td>
</tr>
<tr>
<td>SP x MJ x Tissue</td>
<td>9</td>
<td>141</td>
<td>6.5</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Effect of methyl jasmonate application (0, 5, 10 or 25 mM MJ) on the damage caused by the pine weevil (*H. abietis*) during the first season after planting. Four conifer species were planted in two field trials, one in Spain including *P. pinaster* and *P. radiata* (left panels) and the other in Sweden including *P. sylvestris* and *P. abies* (right panels). In both trials seedlings were naturally infested by the pine weevil, *H. abietis*. Damage by the pine weevil is represented by the probability of being attacked, the probability of stem girdling, the impact of weevil damage on seedling mortality and the total debarked area of attacked seedling. All treatments were applied twice, 4 and 2 weeks before planting. Least square means ± s.e.m. are shown (N = 80 seedlings). Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species. n.c. denote that the generalized model failed to converge. n.s. = no significance. Note that different y-axis scales are used for the debarked area.

Figure 2. Effect of single (4 or 2 weeks before planting) and repeated (4 + 2 weeks before planting) application of methyl jasmonate on seedlings of four conifer species planted in two clear-cuts, one in Spain (left panels) and one in Sweden (right panels), naturally infested by the pine weevil (*H. abietis*). The effect was measured as the concentration of major chemical defence compounds in the stems (non-volatile resin and total polyphenolics) three weeks after the plantation, the debarked area of attacked seedlings by the pine weevil during the first growing season, and the cumulative mortality after two growing seasons. Least square means ± s.e.m. are shown (N = 20 for chemical traits and N = 80 for weevil damage and mortality). Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species. Note that different y-axis scales are used for the debarked area.

Figure 3. Effect of methyl jasmonate application (0, 5, 10 or 25 mM MJ) on the number of attacked and killed *P. sylvestris* seedlings in relation to the amount of debarked area caused by the pine weevil (*H. abietis*) during two growing seasons. Note that MJ treatments shifted the distribution of damage levels to the left and this resulted in reduced mortality rates. All treatments were applied twice 4 and 2 weeks before planting. N = 80 seedlings per treatment.
Figure 4. Recovery of the vegetative costs associated with the methyl jasmonate induced responses measured as loss of height growth of seedlings treated twice with 25 mM MJ in comparison to the control. *P. pinaster* and *P. radiata* were planted in Spain and *P. sylvestris* and *P. abies* were planted in Sweden. Both field trials were naturally infested by the pine weevil (*H. abietis*). Each dot represents the average value of 80 seedlings.

Figure 5. Height of control (white bars) and 25 mM methyl jasmonate treated (black bars) seedlings (double application of 25 mM MJ, 4 and 2 weeks before planting) two seasons after planting of four conifer species in two clear-cut areas in Spain (*P. pinaster* and *P. radiata*) and Sweden (*P. sylvestris* and *P. abies*), with and without physical protection against the pine weevil (*H. abietis*). Only those protected plants that remained non-attacked (or with very low levels of damage) were considered in the analyses. Note that vegetative costs of MJ-associated responses emerged for the three pine species when seedlings were physically protected against pine weevil attack. For unprotected *P. pinaster* and *P. radiata* seedlings, the cost of induced resistance elicited by MJ application was compensated by reduced damage, leading to seedlings of similar height as unprotected control seedlings. For *P. sylvestris*, benefits in form of reduced damage after MJ application did not compensate the reduction of height growth. *Picea abies* showed no reduced growth due to MJ application. Least square means ± s.e. are shown. Asterisks denote significant (p < 0.05) difference between control and MJ seedlings, whereas n.s. indicate no significant differences.

Figure 6. Effect of methyl jasmonate application (0, 5, 10 or 25 mM MJ) on seedling defensive chemistry. (A) Concentration of non-volatile resin and (B) total polyphenolics in the stems of four conifer species. All treatments were applied twice, 7 and 5 weeks before sampling for chemical analyses. Least square means ± s.e.m. are shown (N = 20 seedlings). Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species.
Tables and figures included in Appendices

Appendix A
Table A1. Details of the methyl jasmonate treatments

Figure A1. Pictures of the Spanish field experiment

Figure A2. Pictures of the Swedish field experiment

Appendix B
Table B1. Specific contrasts testing the effect of a single or double application of 25 mM methyl jasmonate.

Appendix C
Figure C1. Effect of methyl jasmonate application during the second growing season

Figure C2. Effect of methyl jasmonate application on seedling size at the time of planting

Figure C3. Effect of methyl jasmonate application on seedling size at field during the two growing seasons

Figure C4. Effect of methyl jasmonate application on chemical defences in the needles

Appendix D
Figure D1. Relationships between chemical defences and weevil damage at field.
First growing season

Spanish trial

- **Probability of being wounded (%)**
- **Probability of being girdled (%)**
- **Mortality (%)**
- **Debarked area (cm²)**

Swedish trial

- **Probability of being wounded (%)**
- **Probability of being girdled (%)**
- **Mortality (%)**

Legend:
- Control
- MJ-5mM
- MJ-10mM
- MJ-25mM

Figure 1
Figure 2
Figure 3
End of the first season (Sep-Oct 2011)
Plantation (May-Jun 2011)
25 mM MJ application (Apr-May 2011)
End of the second season (Oct-Dec 2012)

Height growth loss (%)

- P. pinaster
- P. radiata
- P. sylvestris
- P. abies

Figure 4
Figure 5
Figure 6

A) Non-volatile resin (mg g⁻¹)

B) Total polyphenolics (mg g⁻¹)

Legend:
- Control
- MJ 5 mM
- MJ 10 mM
- MJ 25 mM

P. pinaster, P. radiata, P. sylvestris, P. abies

A) n.s., B) a, b, c
Rafael Zas, Niklas Björklund, Göran Nordlander, Cesar Cendán, Claes Hellqvist and Luis Sampedro. 2013. Exploiting jasmonate-induced responses for field protection of conifer seedlings against a major forest pest, *Hylobius abietis*.

APPENDIX A. Details of the methyl jasmonate treatments and field trials, including photographs of the experimental sites and the treated seedlings.

TABLE A1. Summary of the methyl jasmonate (MJ) treatments included in each experimental site, and total number of seedlings of each species per treatment.

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJ concentration (mM)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1st application (4 weeks before planting)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>2nd application (2 weeks before planting)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Physical protection</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of planted seedlings</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>No. of seedlings used for chemical analyses</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
FIG. A1. Overall view and details of the experimental field trial in Spain. (A) Overall view of the clear-cut where the field trial was established, surrounded by mature Maritime pine forest. (B) Detail of a healthy Radiata pine seedling protected with a plastic shield (Snäppskyddet, Panth-Produkter AB, Östhammar, Sweden) one year after planting. (C) Radiata pine seedlings just after planting at field. (D) Details of the clear-cut where the field trial was established. (E) Plant material (P. pinaster (olive green seedlings) and P. radiata (yellowed green seedlings)) used in the experiment just before planting. Each tray received different MJ treatments.
FIG. A2. View of the experimental site in Sweden on the day of planting, 21 June, 2011 (A). Scots pine (*P. sylvestris*) seedlings of the four treatments T1-T4 (see Table A1) just before planting (B).
APPENDIX B. Supplementary results: Specific contrasts testing the effect of single and double application of 25 mM methyl jasmonate.

TABLE B1. Results of the specific contrasts testing the effect of a single or double application of 25 mM methyl jasmonate (MJ) solution on plant growth and damage by the pine weevil (*H. abietis*) on seedlings of four conifer species planted in two clear-cuts, one in Spain including *P. pinaster* and *P. radiata* and the other in Sweden including *P. sylvestris* and *Picea abies*.

P values for the specific contrast testing the differences between each treatment and the control are shown. MJ was applied either 4 weeks (1st application) or 2 weeks (2nd application) before planting, or at both dates. Results are based on yearly data so that for 2012 we are showing the results for new damage in this year, except in the case of mortality which correspond to cumulative mortality after two growing seasons. Significant p-values (p<0.05) are typed in bold. Dash symbols indicate that the generalized mixed model failed to converge.

<table>
<thead>
<tr>
<th></th>
<th>Spanish trial</th>
<th>Swedish trial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. pinaster</td>
<td>P. radiata</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.074</td>
<td>0.508</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.633</td>
<td>0.626</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.035</td>
<td>0.481</td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.007</td>
<td>0.199</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.090</td>
<td>0.465</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.005</td>
<td>0.732</td>
</tr>
<tr>
<td>Probability of being attacked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.434</td>
<td>0.094</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.603</td>
<td>0.201</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.147</td>
<td>0.036</td>
</tr>
<tr>
<td>Probability of stem girdling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.026</td>
<td>-</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.100</td>
<td>-</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.003</td>
<td>-</td>
</tr>
<tr>
<td>Cumulative mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.741</td>
<td>0.758</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.337</td>
<td>0.163</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.201</td>
<td>0.154</td>
</tr>
<tr>
<td>Debarked area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only 1st application</td>
<td>0.010</td>
<td>0.563</td>
</tr>
<tr>
<td>Only 2nd application</td>
<td>0.108</td>
<td>0.931</td>
</tr>
<tr>
<td>Both applications</td>
<td>0.002</td>
<td>0.093</td>
</tr>
</tbody>
</table>
APPENDIX C. Supplementary results: Effect of methyl jasmonate treatments on weevil damage during the second growing season, on seedling growth at different times, and on chemical defences in the needles.

FIGURE C1. Field results for the second growing season. Effect of the methyl jasmonate application (0, 5, 10 and 25 mM MJ) on the probability of being attacked, the probability of stem girdling, mortality rates and new debarked area in attacked seedlings of four conifer species planted in two clear-cuts in Spain (*P. pinaster* and *P. radiata*, left panels) and Sweden (*P. sylvestris* and *P. abies*, right panels) naturally attacked by the pine weevil (*H. abietis*), during the second year after planting. All treatments were applied twice, 4 and 2 weeks before plantation. Least square means ± s.e.m. (N = 80). Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species. n.s.: no significant differences were found; n.c.: generalized mixed model failed to converge. Note that different y-axis scales are used for the debarked area.
FIGURE C2. Total height (A) and basal stem diameter (B) at the time of planting of seedlings of four conifer species treated with different concentration of methyl jasmonate. All treatments were applied twice 4 and 2 weeks before measurements. Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species.
FIGURE C3. Effect of methyl jasmonate application (0 mM, 5 mM, 10 mM, 25 mM MJ) on height and basal diameter of four conifer species planted in two clear-cuts in Spain (\textit{P. pinaster} and \textit{P. radiata}, left panels) and Sweden (\textit{P. sylvestris} and \textit{P. abies}, right panels) naturally infested by the pine weevil (\textit{H. abietis}) after the first (bottom part of the bars) and second (upper part of the bars) growing seasons after planting. All treatments were applied twice, 4 and 2 weeks before plantation. Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species and year. Least square means ± s.e.m (N = 80 seedlings).
FIGURE C4. Effect of methyl jasmonate application (0, 5, 10 or 25 mM MJ) on major chemical defences in the needles. (A) Concentration of non-volatile resin and (B) total polyphenolics in the needles of seedlings of four conifer species. All treatments were applied twice, 7 and 5 weeks before sampling for chemical analyses. Least square means ± s.e. (N = 80 seedlings). Different letters above each bar indicate significant differences (p < 0.05) among MJ treatments within each species.
APPENDIX D. Supplementary results: Relationship between chemical defences and weevil damage at field

FIGURE D1. Relationships between the concentration of non-volatile resin and total polyphenolics in the stems and the debarked area caused by the pine weevil at field in the four studied species. Each point represents the least square mean for each MJ treatment, including the untreated control (treatment T1, white points), the two single applications of MJ (treatments T5 and T6, gray points) and the four double applications of MJ (treatments T2, T3, T4, black points). Bars are the standard errors of the least square means. The coefficient of determination (R^2) is shown for those relationships that are significant at $p<0.05$.

Zas, Björklund, Nordlander, Cendán, Hellqvist and Sampedro. 2013. Exploiting jasmonate-induced responses for field protection of conifer seedlings against a major forest pest, *Hylobius abietis*.

Appendix D - 1