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ABSTRACT 

Brewer´s spent grain (BSG) is the major by-product generated by the brewing industry. BSG is rich in 
carbohydrates, lignin, proteins and lipids, and has a high potential as source of food, energy and chemicals. In 
this work, the composition and structural characteristics of the lignin from BSG have been studied in detail by 
Py-GC/MS and 2D-NMR. The data demonstrated that this lignin is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-
S) lignin, with a predominance of G units (S/G ratio of 0.4). 2D-NMR indicated that the main substructures 
present include β–O–4´ alkyl-aryl ethers followed by small amounts of phenylcoumarans and resinols. 

I. INTRODUCTION 

Brewer´s spent grain (BSG) is the solid residue obtained from barley (Hordeum vulgare L.) after mashing and 
filtration from the brewing process. BSG basically consists of the husk–pericarp–seed coat layers that covered 
the original barley grain [1]. BSG represents up to 30% (w/w) of the starting malted grain, which makes this a 
readily available, high volume and low cost by-product within the brewing industry, and a potentially valuable 
resource for industrial exploitation. BSG is a lignocellulosic material containing cellulose (17-25%), non-
cellulosic carbohydrates (25-35%), protein (15-24%) and lignin (8-28%), with lower amounts of lipids (10%) 
[1,2]. For an appropriate valorization of BSG as a source for added-value products, the complete characterization 
of the different components present is of high interest. Previous studies have mostly dealt with the composition 
of carbohydrates, proteins, lipids and p-hydroxycinnamic acids [2,3]. In comparison, studies concerning the 
composition and structure of lignin in BSG have been relatively scarce and mostly limited to its interactions with 
gastrointestinal microbiota [4]. In this paper, an in-depth and complete characterization of the lignin polymer of 
BSG has been performed. For this, a ‘milled-wood’ lignin (MWL) preparation was isolated according to 
traditional lignin isolation procedures, which was subsequently analyzed by Py-GC/MS and 2D-NMR. 

II. EXPERIMENTAL 

Samples 

BSG was obtained from Adnams brewery (Southwold, UK) and was kindly provided by Prof. Craig B. Faulds 
(INRA, Marseille). Klason lignin content was estimated as the residue after sulphuric acid hydrolysis of the pre-
extracted material according to the TAPPI method T222 om-8. The Klason lignin content was then corrected for 
proteins, determined from the N content and using a 6.25 factor, and ash, estimated as the residue after 6 h of 
heating at 575 ºC. The acid-soluble lignin was determined, after the insoluble lignin was filtered off, by UV-
spectroscopic determination at 205 nm wavelength using 110 L cm-1 g-1 as the extinction coefficient. 

Milled-wood lignin’ isolation 

The lignins were obtained according to the classical procedure, and the detailed protocol has been explained 
somewhere else [5,6]. The final yields were 10% of the original Klason lignin content. 

Analytical pyrolysis 

Pyrolysis of MWL (approximately 100 μg) was performed with a 3030 micro-furnace pyrolyzer (Frontier 
Laboratories Ltd.) connected to an Agilent 7820A GC using a DB-1701 fused-silica capillary column (60 m x 
0.25 mm i.d., 0.25 μm film thickness) and an Agilent 5975 mass selective detector (EI at 70 eV). The pyrolysis 
was performed at 500 ºC. The oven temperature was programmed from 45 ºC (4 min) to 280 ºC (10 min) at 4 ºC 
min-1. Helium was the carrier gas (1 mL min-1). Peak molar areas were calculated for the lignin-degradation 
products, the summed areas were normalized and expressed as percentages. 

NMR spectroscopy 

2D-NMR spectra were recorded at 25 ºC on a Bruker AVANCE III 500 MHz instrument, equipped with a 
cryoprobe. MWL (40 mg) was dissolved in 0.75 mL of dimethylsulfoxide (DMSO)-d6. The central solvent peak 
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was used as internal reference (DMSO δC/δH 39.5/2.49). The HSQC (heteronuclear single quantum coherence) 
experiment used Bruker’s “hsqcetgpsisp2.2” pulse program (adiabatic-pulsed version) with spectral widths of 
5000 Hz and 20,843 Hz for the 1H- and 13C dimensions. The number of transients was 64, and 256 time 
increments were always recorded in the 13C dimension. The 1JCH used was 145 Hz. Processing used typical 
matched Gaussian apodization in the 1H dimension and squared cosine-bell apodization in the 13C dimension. 
Prior to Fourier transformation, the data matrices were zero-filled up to 1024 points in the 13C-dimension. 2D-
NMR cross-signals were assigned by literature comparison [5-7]. A semiquantitative analysis of the HSQC 
correlation peaks was performed using Bruker’s Topspin 3.1 processing software. Relative abundances of inter-
unit linkages were estimated from Cα–Hα correlations, and the relative abundance of side-chains involved in 
different substructures and terminal structures were calculated. In the aromatic/unsaturated region, C2−H2 from 
G and C2,6−H2,6 from S lignin units were used to estimate their abundances. 

III. RESULTS AND DISCUSSION 

The Klason lignin content of the BSG was relatively low (8.8%) compared to previous published data for the 
same sample (16-20.1%). The main reason for this discrepancy is that previous works did not consider the high 
amounts of proteins and ashes when quantifying the Klason lignin content, which was corrected here. In this 
work, we have thoroughly studied the lignin composition and structure of BSG. For this purpose, a ‘milled-
wood’ lignin (MWL) preparation was isolated and was then analyzed by Py-GC/MS and 2D-NMR. 

Py-GC/MS 

The pyrogram of the MWL from BSG is shown in Figure 1. Pyrolysis released phenolic compounds that are 
derived from p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin units. The most predominant phenolic 
compounds were phenol (1), guaiacol (2), 4-methylphenol (4), 4-methylguaiacol (6), 4-vinylphenol (10), 4-
vinylguaiacol (11), syringol (15), trans-isoeugenol (19), 4-methylsyringol (20), 4-vinylsyringol (26), 
guaiacylacetone (27) and trans-4-propenylsyringol (33). The high levels of phenol, 4-methylphenol and 4-
vinylphenol released, together with the presence of indol, indicates a major contribution from proteins. In 
addition, the high amounts of 4-vinylphenol released upon pyrolysis, as also occurs in other grasses, also point to 
the presence of p-coumarates esters, which decarboxylates under pyrolytic conditions [5-9]. Similarly, 4-
vinylguaiacol (11), which is present in high abundance, also arises from ferulates after decarboxylation upon 
pyrolysis. A rough estimation of the S/G ratio (by using the molar areas of all G- and S-derived compounds, 
except 4-vinylguaiacol, that also arises from ferulates, and its respective 4-vinylsyringol), indicate a S/G ratio of 
0.4. The occurrence of p-hydroxycinnamates in BSG was assessed by pyrolysis in the presence of TMAH [5-9]. 
Previous studies have indicated that p-coumarates in grasses are esterified to the lignin side-chains, and more 
specifically acylates the γ-OH of the lignin side-chain [5,6,10,11]. 

 

 
Figure 1. Py-GC/MS of the MWL isolated from BSG. 
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2D-NMR 

The MWL from BSG was also analyzed by 2D-NMR. The side-chain (δC/δH 69−88/3.8−5.6) and the aromatic 
(δC/δH 90−150/5.8−8.0) regions of the spectrum are shown in Figure 2. The main substructures present are also 
depicted in Figure 2. The spectrum shows prominent signals corresponding to β–O–4′ aryl-ether linkages (A), 
together with smaller signals for phenylcoumarans (B), resinols (C) and dibenzodioxocins (D). The main cross-
signals in the aromatic region of the HSQC spectra corresponded to the aromatic rings of the H, G and S lignin 
units, and the p-hydroxycinnamates ferulates and p-coumarates. Strong signals corresponding to C3,5–H3,5 and 
C2,6–H2,6 correlations in “H-lignin” units were observed, confirming that the high abundance of ‘H-units’ 
observed upon pyrolysis was also due to the presence of proteins. Interestingly, in this region of the HSQC 
spectra, it was also possible to detect two characteristic signals at δC/δH 94.1/6.56 and 98.8/6.20 corresponding to 
the C8−H8 and C6−H6 correlations of tricin (T), a flavone that is apparently incorporated into the lignins in some 
grasses [6], and that also occur in other monocotyledons, as in the lignin of coconut coir [7]. 

The relative abundances of the main lignin inter-unit linkages, the molar abundances of the different lignin units 
(H, G and S), and p-coumarates, ferulates and tricin, are shown in Table 1. The main substructure present in the 
lignin of BSG was the β–O–4′ aryl ether, that accounts for 91% of all inter-unit linkages, followed by smaller 
amounts of phenylcoumaran that involved 6.8% of all linkages and resinols with 2.2%. The lignin S/G ratio 
determined upon NMR (0.4) was similar to that obtained upon Py-GC/MS. 

 

 

 
Figure 2. Side-chain and aromatic/unsaturated regions in the HSQC spectrum of the MWL from BSG. Main 
structures present: (A) β–O–4´ alkyl-aryl ethers; (B) phenylcoumarans; (C) resinols; (PCA) p-coumarates; (FA) 
ferulates; (H) p-hydroxyphenyl units; (G) guaiacyl units; (S) syringyl units; (T) tricin. 

7.5 7.0 6.5 6.0

140

130

120

110

100S2,6

T8

T6

T3
T2',6'

F2
F5

F6

Fβ

Fα

G2

G5+G6 {
H2,6

H3,5

δH

δC

OHO

OMeO

OMe

α

β

γ 5′

BA

HO
O

HO

OMe

OMe

O

α β 4′

γ

OMe

O

OH
α

G

O

OMe

OH

MeO

α

S

PCA
OH

O

α
β

γ
O

O

O

OMe

O

O

OMe

α

β

γ
α′

β′

γ′

C

O

OH
α

H
OH

OHO

O

O

OMe

OMe

T

2

3

6

5

26

5

26 8

6
5

7 9

10 4
3

2
1'

6'

2'
3'

5'

4'

85

80

75

δC

5.5 5.0 4.5 4.0 δH

Aβ(G)

Aβ(S)

Aα

Cα

Bα

PCA2,6

FA

O

O

α
β

γ

OMe

O

13th European Workshop on Lignocellulosics and Pulp

709



Table 1. Structural Characteristics (Lignin Inter-Unit Linkages, Aromatic Units,  p-
Coumarates and Ferulates Content) of the MWL Isolated from Brewerʹs Spent Grain 
  Abundance 
Lignin inter-unit linkages (%)  
 β–O–4´ aryl ethers (A) 72 
 Cα-oxidized β–O–4´ aryl ethers (Aox) 5 
 Phenylcoumarans (B) 12 
 Resinols (C) 6 
 Dibenzodioxocins (D) 5 
Lignin aromatic units  
 H (%) 31 
 G (%) 51 
 S (%) 18 
 S/G ratio 0.35 
p-Hydroxycinnamates  
 p-Coumarates (%) 2 
 Ferulates (%) 7 
 p-Coumarates/Ferulates ratio 0.28 
Tricin  6 

 

IV. CONCLUSIONS 
Py-GC/MS and 2D-NMR analysis of the MWL isolated from BSG indicated that it is a H:G:S lignin with a S/G 
ratio of 0.4, and with some amounts of associated p-coumarates and ferulates. The main lignin inter-unit linkages 
present was the β–O–4′ aryl ether, followed by smaller amounts of phenylcoumaran and resinols. The flavone 
tricin was incorporated into this lignin, as also occurs in other grasses. 
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	,𝐗-𝐧.=𝟐,𝐗−,𝐗-𝐦.-,𝐗-𝐦𝐚𝐱.−,𝐗-𝐦𝐢𝐧..     (2)
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	The operational values for the independent variables in the 15 experiments conducted are given in Table 1.
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