Supporting Information related to the article

Novel vascular disrupting agents with a cyclohexanedione scaffold identified through a ligand-based virtual screening approach

María-Dolores Canela, María-Jesús Pérez-Pérez, Sam Noppen, Gonzalo Sáez-Calvo, J. Fernando Díaz, María-Josè Camarasa, Sandra Liekens and Eva-Maria Priego

Includes:

General chemistry procedures S2

General synthetic procedures and analytical and spectroscopic data of hit 9 and the described compounds S2-S19

Table S1. SMILES strings of the VS hits tested S20

Table S2. Anti-proliferative activity of the VS hits in endothelial and tumor cell lines S21

Figure S1: Displacement of MTC (B) by 9 S22

Figure S2. Dose-response curves of compound 9 in endothelial and tumor cells S23

Figure S3: Displacement of R-PT (A) and MTC (B) by 16c S24
Chemistry procedures

Melting points were obtained on a Reichert-Jung Kofler apparatus and are uncorrected. The elemental analysis was performed with a Heraeus CHN-O-RAPID instrument. The elemental compositions of the compounds agreed to within ±0.4% of the calculated values. For all the tested compounds, satisfactory elemental analysis was obtained supporting >95% purity. Electrospray mass spectra were measured on a quadrupole mass spectrometer equipped with an electrospray source (Hewlett-Packard, LC/MS HP 1100). 1H and 13C NMR spectra were recorded on a Varian INNOVA 300 operating at 299 MHz (1H) and 75 MHz (13C), respectively, a Varian INNOVA-400 operating at 399 MHz (1H) and 99 MHz (13C), respectively, and a VARIAN SYSTEM-500 operating a 499 MHz (1H) and 125 MHz (13C), respectively.

Analytical TLC was performed on silica gel 60 F$_{254}$ (Merck) precoated plates (0.2 mm). Spots were detected under UV light (254 nm) and/or charring with ninhydrin or phophomolibdic acid. Separations on silica gel were performed by preparative centrifugal circular thin-layer chromatography (CCTLC) on a Chromatotron8 (Kiesegel 60 PF$_{254}$ gipshaltig (Merck)), with layer thickness of 1 and 2 mm and flow rate of 4 or 8 mL/min, respectively. Flash column chromatography was performed in a Biotage Horizon instrument.

Microwave reactions were performed using the Biotage Initiator 2.0 single-mode cavity instrument from Biotage (Uppsala). Experiments were carried out in sealed microwave process vials utilizing the standard absorbance level (400 W maximum power). The temperature was measured with an IR sensor on the outside of the reaction vessel.

2-(1-((2-hydroxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (9). EM (ES, positive mode): m/z 336 (M+H)$^+$. 1H-NMR (DMSO-d_6, 500 MHz) δ: 1.00 (t, 3H, J=7.3 Hz, CH$_3$), 2.60-2.64 (m, 2H, H-4, H-6), 2.80-2.87 (m, 4H, H-4, H-6, CH$_2$), 3.34-3.36 (m, 1H, H-5), 6.90 (td, 1H J= 7.6, 1.3 Hz, Ar), 7.01 (dd, 1 H, J = 8.1, 1.3 Hz, Ar), 7.17–7.28 (m, 3H, Ar), 7.31-7.36 (m, 4H, Ar), 10.15 (br s, 1H, OH), 14.80 (br s, 1H, NH).

General procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines

A microwave vial was charged with 2-acyl-5-phenylcyclohexane-1,3-dione (1.0 mmol), the appropriate aniline (1.5 mmol) and 4 Å molecular sieves in toluene (2 mL). The reaction vessel was sealed and heated in a
microwave reactor at 150 °C for 2 h. After cooling, the solvent was evaporated. The resulting residue was purified as specified.

2-(1-((3-Methoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14d).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylecyclohexane-1,3-dione (12) (40 mg, 0.16 mmol) and m-anisidine (27 µL, 0.24 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 55 mg (98%) of 14d as a white solid. Mp 104-106 °C. EM (ES, positive mode): m/z 350 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 1.06 (t, 3H, J = 7.3 Hz, CH3), 2.60-2.67 (m, 2H, H-4, H-6), 2.79-2.92 (m, 4H, H-4, H-6, CH2), 3.35 (m, 1H, H-5), 3.79 (s, 3H, OCH3), 6.87–6.94 (m, 2H, Ar), 7.01 (dd, 1H, J = 8.3, 2.5 Hz, Ar), 7.24 (dd, 1H, J = 8.6, 5.1, 3.3 Hz, Ar), 7.33–7.35 (m, 4H, Ar), 7.41 (t, 1H, J = 8.0 Hz, Ar), 14.99 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 12.7 (CH3), 23.4 (CH2), 36.0 (C-5), 46.0 (C-4, C-6), 55.4 (OCH3), 106.8 (NHC=), 111.8, 113.9, 118.2, 126.5, 126.7, 128.5, 130.4, 134.0, 143.4, 160.0 (Ar), 177.1 (NHC=). Anal. calc. for (C22H23NO3): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.45; H, 6.49; N, 4.08.

2-(1-((4-Methoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14e).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylecyclohexane-1,3-dione (12) (25 mg, 0.10 mmol) and p-anisidine (18 mg, 0.15 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 30 mg (86%) of 14e as a white solid. Mp 122-124 °C. EM (ES, positive mode): m/z 350 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 1.03 (t, 3H, J = 7.3 Hz, CH3), 2.60-2.64 (m, 2H, H-4, H-6), 2.65-2.87 (m, 4H, H-4, H-6, CH2), 3.32 (m, 1H, H-5), 3.80 (s, 3H, OCH3), 7.02-7.07 (m, 2H, Ar), 7.20–7.29 (m, 3H, Ar), 7.33 (d, 2H, J = 1.1 Hz, Ar), 7.34 (s, 2H, Ar), 14.80 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 13.0 (CH3), 23.7 (CH2), 36.5 (C-5), 46.5 (C-4, C-6), 55.9 (OCH3), 107.2 (NHC=), 115.1, 127.0, 127.2, 127.8, 128.8, 128.9, 143.9, 159.1 (Ar), 178.0 (NHC=). Anal. calc. for (C22H23NO3): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.37; H, 6.54; N, 3.96.

2-(1-((3,4-Dimethoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylecyclohexane-1,3-dione (12) (40 mg, 0.16 mmol) and 3,4-dimethoxyaniline (30 mg, 0.24 mmol) in toluene. The residue was worked up and purified by CCTLC in
the Chromatothron (hexane/ethyl acetate, 5:1) to yield 20 mg (33%) of 14f as a white solid. Mp 209-211 °C. EM (ES, positive mode): m/z 380 (M+H)⁺. ¹H NMR (DMSO-d₆, 500 MHz) δ: 1.06 (t, 3H, J = 7.2 Hz, CH₃), 2.66 (m, 2H, H-4, H-6), 2.78-2.90 (m, 4H, H-4, H-6, CH₂), 3.39 (m, 1H, H-5), 3.77 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 6.85 (dd, 1H, J = 8.5, 2.4 Hz, Ar), 6.94 (d, 1H, J = 2.4 Hz, Ar), 7.04 (d, 1H, J = 8.5 Hz, Ar), 7.23 (dd, 1H, J = 8.7, 5.2, 3.4 Hz, Ar), 7.33 (d, 2H, J = 1.4 Hz, Ar), 7.34 (s, 2H, Ar), 14.82 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 125 MHz) δ: 13.2 (CH₃), 23.9 (CH₂), 36.5 (C-5), 46.5 (C-4, C-6), 56.1 (OCH₃), 56.2 (OCH₃), 107.2 (NHC=C), 110.2, 110.6, 112.2, 118.5, 127.0, 127.2, 128.9, 143.9, 148.8, 149.5 (Ar), 178.0 (NHC=C). Anal. calc. for (C₂₃H₂₅NO₄): C, 72.80; H, 6.64; N, 3.69. Found: C, 72.77; H, 6.59; N, 3.76.

5-Phenyl-2-(1-((3,4,5-trimethoxyphenyl)amino)propylidene)cyclohexane-1,3-dione (14g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionyl-cyclohexane-1,3-dione (12) (40 mg, 0.16 mmol) and 3,4,5-trimethoxyaniline (44 mg, 0.24 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 20 mg (30 %) of 14g as a white solid. Mp 160-162 °C. EM (ES, positive mode): m/z 410 (M+H)⁺. ¹H NMR (DMSO-d₆, 500 MHz) δ: 1.10 (t, 3H, J = 7.1 Hz, CH₃), 2.61-2.68 (m, 2H, H-4, H-6), 2.78-2.92 (m, 4H, H-4, H-6, CH₂), 3.35 (m, 1H, H-5), 3.69 (s, 3H, OCH₃), 3.79 (s, 6H, OCH₃), 6.67 (s, 2H, Ar), 7.24 (ddd, 1H, J = 8.3, 5.3, 3.3 Hz, Ar), 7.33 (d, 2H, J = 1.6 Hz, Ar), 7.34, 7.34 (s, 2H, Ar), 14.90 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 125 MHz) δ: 11.8 (CH₃), 22.5 (CH₂), 38.1 (C-5), 44.8 (C-4, C-6), 55.0 (OCH₃), 59.0 (OCH₃), 105.6 (NHC=C), 102.8, 125.4, 125.6, 127.3, 130.3, 135.7, 142.2, 152.1 (Ar), 173.3 (NHC=C). Anal. calc. for (C₂₄H₂₇NO₅): C, 70.40; H, 6.65; N, 3.42. Found: C, 70.70; H, 6.68; N, 3.62.

2-(1-(Benzod[d][1,3]dioxol-5-ylamino)propylidene)-5-phenylcyclohexane-1,3-dione (14h).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionyl-cyclohexane-1,3-dione (12) (40 mg, 0.16 mmol) and 3,4-methylenedioxyaniline (33 mg, 0.24 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 58 mg (99%) of 14h as a white solid. Mp 131-133 °C. EM (ES, positive mode): m/z 364 (M+H)⁺. ¹H NMR (DMSO-d₆, 500 MHz) δ: 1.03 (t, 3H, J = 7.3 Hz, CH₃), 2.60-2.64 (m, 2H, H-4, H-6), 2.79-2.89 (m, 4H, H-4, H-6, CH₂), 3.32 (m, 1H, H-5), 6.11 (s, 2H, CH₂), 6.79 (dd, 1H, J = 8.3, 2.1 Hz, Ar), 7.01 (m, 2H, Ar), 7.23 (m, 1H, Ar), 7.33 (m, 4H, Ar), 14.78 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 125 MHz) δ: 12.6 (CH₃), 23.3 (CH₂), 36.0 (C-5), 46.0 (C-4, C-6), 101.9
Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylcyclohexane-1,3-dione (12) (40 mg, 0.16 mmol) and aniline (22 µL, 0.24 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 41 mg (80%) of 14i as a white solid. Mp 112-114 ºC. ESI (ES, positive mode): m/z 320 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 1.04 (t, 3H, J = 7.3 Hz, CH3), 2.62-2.66 (m, 2H, H-4, H-6), 2.81-2.88 (m, 4H, H-4, H-6, CH2), 3.34 (m, 1H, H-5), 7.24 (m, 1H, Ar), 7.34 (m, 6H, Ar), 7.45 (m, 1H, Ar), 7.52 (m, 2H, Ar), 15.01 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 13.0 (CH3), 23.8 (CH2), 36.5 (C-5), 46.5 (C-4, C-6), 107.3 (NHC=C), 126.6, 127.0, 127.20, 128.5, 128.9, 130.1, 136.3, 143.9 (Ar), 177.5 (NHC=C). Anal. calc. for (C21H21NO2): C, 78.97; H, 6.63; N, 4.39. Found: C, 78.68; H, 6.60; N, 4.21. Although this compound was mentioned in ref 1 no analytical or spectroscopical data were provided.

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (35 mg, 0.15 mmol) and 2-chloroaniline (33 mg, 0.26 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 34 mg (75%) of 18a as a white solid. Mp 132-134 ºC. EM (ES, positive mode): m/z 334 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 0.98 (t, 3H, J = 7.3 Hz, CH3), 2.18 (s, 3H, CH3), 2.61-2.65 (m, 2H, H-4, H-6), 2.77-2.88 (m, 4H, H-4, H-6, CH2), 3.35 (m, 1H, H-5), 7.24 (m, 1H, Ar), 7.28 (dd, 1H, J = 7.2, 2.1 Hz, Ar), 7.31-7.38 (m, 6H, Ar), 7.41 (dd, 1H, J = 7.0, 2.1 Hz, Ar), 14.88 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 12.7 (CH3), 17.9 (CH3), 23.8 (CH2), 36.5 (C-5), 46.5 (C-4, C-6), 107.3 (NHC=C), 127.0, 127.2, 127.3, 127.4, 128.9, 129.0, 131.4, 134.1, 135.0, 143.9 (Ar), 178.0 (NHC=C). Anal. calc. for (C22H23NO2): C, 79.25; H, 6.95; N, 4.20. Found: C, 79.40; H, 6.15; N, 4.01.
Chromatothron (hexane/ethyl acetate, 5:1) to yield 30 mg (59%) of 18a as a white solid. Mp 125-127 °C. EM (ES, positive mode): m/z 340 (M+H)⁺ with a Cl isotopic pattern. ¹H NMR (DMSO-d₆, 300 MHz) δ: 2.41 (s, 3H, CH₃), 2.41-2.67 (m, 2H, H-4, H-6), 2.84-2.88 (m, 2H, H-4, H-6), 3.38 (m, 1H, H-5), 7.25 (m, 1H, Ar), 7.34 (m, 4H, Ar), 7.49 (m, 3H, Ar), 7.68 (m, 1H,Ar), 15.07 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 20.1 (CH₃), 36.3 (C-5), 46.9 (C-4, C-6), 109.0 (NHC=), 127.0, 127.2, 128.7, 129.0, 129.1, 129.7, 130.0, 130.6, 134.2, 143.8 (Ar), 173.0 (NHC=). Anal. calc. for (C₂₀H₁₈ClNO₂): C, 70.69; H, 5.34; N, 4.12. Found: C, 70.94; H, 5.34; N, 4.20.

2-(1-((2-Fluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18b).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2-fluoroaniline (25 µL, 0.26 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield 45 mg (78%) of 18b as a white solid. Mp 146-147 °C. EM (ES, positive mode): m/z 324 (M+H)⁺. ¹H NMR (DMSO-d₆, 500 MHz) δ: 2.44 (s, 3H, CH₃), 2.61-2.66 (m, 2H, H-4, H-6), 2.84-2.94 (m, 2H, H-4, H-6), 3.38 (m, 1H, H-5), 7.23 (m, 1H, Ar), 7.34 (m, 5H, Ar), 7.45 (m, 2H, Ar), 7.51 (td, 1H, J = 7.9, 1.3 Hz, Ar), 14.90 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 125 MHz) δ: 19.6 (CH₃), 35.9 (C-5), 45.3 (C-4, C-6), 108.8 (NHC=), 116.4, 125.2, 126.5, 126.7, 128.2, 128.5, 129.8, 143.4, 145.9, 156.9 (Ar), 172.8 (NHC=). Anal. calc. for (C₂₀H₁₈FNO₂): C, 74.29; H, 5.61; N, 4.33. Found: C, 73.99; H, 5.34; N, 4.29.

5-Phenyl-2-(1-((2-(trifluoromethyl)phenyl)amino)ethylidene)cyclohexane-1,3-dione (18c).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2-trifluoromethylaniline (33 µL, 0.26 mmol) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 4:1) to yield 19 mg (30%) of 18c as a white solid. Mp 167-169 °C. EM (ES, positive mode): m/z 374 (M+H)⁺. ¹H NMR (DMSO-d₆, 500 MHz) δ: 2.38 (s, 3H, CH₃), 2.54-2.70 (m, 2H, H-4, H-6), 2.80-2.95 (m, 2H, H-4, H-6), 3.36 (m, 1H, H-5), 7.24 (m, 1H, Ar), 7.44 (m, 4H, Ar), 7.65 (m, 2H, Ar), 7.82 (dd, 1H, J = 8.4, 6.9 Hz, Ar), 7.90 (m, 1H, Ar), 15.28 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 125 MHz) δ: 19.9 (CH₃), 36.0 (C-5), 45.0 (C-4, C-6), 108.6 (NHC=), 126.9 (CF₃), 124.3, 124.6, 124.8, 126.8, 128.5, 128.8, 129.6, 133.0, 134.2, 143.4 (Ar), 173.0 (NHC=). Anal. calc. for (C₂₁H₁₈F₃NO₂): C, 67.55; H, 4.86; N, 3.75. Found: C, 67.63; H, 4.74; N, 3.82.
2-(1-((2,3-Difluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18d).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2,3-difluoroaniline (26 µL, 0.26 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 24 mg (41%) of 18d as a white solid. Mp 131-133 ºC. EM (ES, positive mode): m/z 342 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 2.45 (s, 3H, CH3), 2.57-2.67 (m, 2H, H-4, H-6), 2.85 (m, 2H, H-4, H-6), 3.37 (m, 1H, H-5), 7.24 (d, 1H, J = 4.2 Hz, Ar), 7.34 (m, 6H, Ar), 7.51 (m, 1H, Ar), 14.93 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 19.7 (CH3), 35.8 (C-5), 45.4 (C-4, C-6), 109.0 (NHC=C), 116.8, 117.0, 123.7, 124.9, 126.5, 126.7, 128.5, 143.3, 149.1, 151.0 (Ar), 172.8 (NHC=C). Anal. calc. for (C20H17F2NO2): C, 70.37; H, 5.02; N, 4.10. Found: C, 70.41; H, 5.00; N, 3.98.

2-(1-((2,6-Difluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18e).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2,6-difluoroaniline (26 µL, 0.26 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 20 mg (37%) of 18e as a white solid. Mp 135-137 ºC. EM (ES, positive mode): m/z 342 (M+H)+. 1H NMR (DMSO-d6, 500 MHz) δ: 2.37 (s, 3H, CH3), 2.57-2.63 (m, 2H, H-4, H-6), 2.83 (m, 2H, H-4, H-6), 3.38 (m, 1H, H-5), 7.24 (d, 1H, J = 4.2 Hz, Ar), 7.34 (m, 6H, Ar), 7.54 (m, 1H, Ar), 14.61 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ: 19.4 (CH3), 35.8 (C-5), 46.4 (C-4, C-6), 109.1 (NHC=C), 112.4, 113.8, 124.5, 126.7, 126.9, 128.5, 130.2, 143.3, 156.0, 157.9, 172.4 (NHC=C). Anal. calc. for (C20H17F2NO2): C, 70.37; H, 5.02; N, 4.10. Found: C, 70.53; H, 4.99; N, 4.06.

2-(1-((2,5-Dimethoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2,5-dimethoxyaniline (40 mg, 0.26 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 30 mg (48%) of 18f as a white solid. Mp 183-185 ºC. EM (ES, positive mode): m/z 366 (M+H)+. 1H NMR (DMSO-d6, 300 MHz) δ: 2.42 (s, 3H, CH3), 2.57-2.64 (m, 2H, H-4, H-6), 2.72-2.85 (m, 2H, H-4, H-6), 3.39 (m, 1H, H-5), 3.73 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 6.95 (m, 2H, Ar), 7.12 (d, 1H, J = 9.9 Hz, Ar), 7.24 (m, 1H, Ar), 7.34 (m, 4H, Ar), 14.76 (br s, 1H, NH). 13C NMR (DMSO-d6, 100 MHz) δ: 19.7 (CH3), 36.1 (C-5), 46.6 (C-4, C-6), 55.7 (OCH3), 56.1 (OCH3), 108.4.
(NHC=C), 112.9, 113.1, 113.9, 125.0, 126.5, 126.7, 128.5, 143.5, 147.2, 153.0 (Ar), 172.6 (NHC=C). Anal. calc. for (C_{22}H_{23}NO_{4}): C, 72.31; H, 6.34; N, 3.83. Found: C, 72.20; H, 6.28; N, 3.54.

2-(1-((2,6-Dimethoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (100 mg, 0.43 mmol) and 2,6-dimethoxyaniline (100 mg, 0.65 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 36 mg (23%) of 18g as a white solid. Mp 159-160 ºC. EM (ES, positive mode): m/z 366 (M+H)+. 1H NMR (DMSO-d_{6}, 400 MHz) δ: 2.24 (s, 3H, CH_{3}), 2.55-2.59 (m, 2H, H-4, H-6), 2.77-2.87 (m, 2H, H-4, H-6), 3.35 (m, 1H, H-5), 3.81 (s, 6H, OCH_{3}), 6.82 (d, 2H, J = 8.52 Hz, Ar), 7.20–7.27 (m, 1H, Ar), 7.34 (m, 4H, Ar), 7.38 (d, 1H, J = 8.5 Hz, Ar), 14.39 (br s, 1H, NH). 13C NMR (DMSO-d_{6}, 100 MHz) δ: 19.4 (CH_{3}), 36.1 (C-5), 46.6 (C-4, C-6), 56.0 (OCH_{3}), 108.1 (NHC=C), 104.6, 112.8, 126.5, 126.7, 128.5, 129.6, 143.6, 154.5 (Ar), 174.0 (NHC=C), 196.9 (CO). Anal. calc. for (C_{22}H_{23}NO_{4}): C, 72.31; H, 6.34; N, 3.83. Found: C, 72.60; H, 6.61; N, 3.92.

(E)-4-Cyclohexylbut-3-en-2-one (20a).

To a solution of cyclohexanecarbaldehyde (19a) (1.21 mL, 10 mmol) in a mixture of acetone/water (4 mL/5 mL), 1% aqueous solution of sodium hydroxide (5 mL) was rapidly added, and the reaction mixture was stirred at room temperature overnight. The crude reaction mixture was then neutralized by the addition of 1M HCl, extracted with CH_{2}Cl_{2} (3 x 20 mL) and washed with brine (20 mL). The organic phase was dried over anhydrous Na_{2}SO_{4}, filtered and evaporated to dryness. The residue was purified by flash column chromatography (hexane/ethyl acetate) to yield 984 mg (65%) of 20a as an oil. EM (ES, positive mode): m/z 153 (M+H)+. 1H NMR (DMSO-d_{6}, 300 MHz) δ: 1.11-1.27 (m, 5H, H-2’, H-3’, H-4’, H-5’, H-6’), 1.69-1.70 (m, 5H, H-2’, H-3’, H-4’, H-5’, H-6’), 2.12 (m, 1H, H-1’), 2.18 (s, 3H, CH_{3}), 5.96 (d, 1H, J = 16.1 Hz, H-3), 6.78 (dd, 1H, J = 16.1, 6.7 Hz, H-4).

[1,1’-Bi(cyclohexane)-3,5-dione (21a).

To a solution of 25% sodium ethoxide in ethanol (15 mL, 6.86 mmol), diethyl malonate (652 µL, 6.86 mmol) was added dropwise, keeping the temperature below 25 ºC. The mixture was further diluted with ethanol (1.2 mL) and heated at 60 ºC. Then, 20a (950 mg, 6.24 mmol) in ethanol (2.2 mL) was added dropwise and the mixture was stirred at reflux and monitored by LC-MS until the corresponding starting material was consumed. The reaction mixture was treated with 6M sodium hydroxide (2.2 mmol) and heated
at 80 °C for 2h. After cooling, ethanol was removed in vacuo and the resulting solution was washed with toluene (2x 10 mL). The aqueous layer was treated with 37% HCl until pH 2, refluxed for 1h and left to cool at room temperature. The solid thus formed was isolated by filtration to yield 840 mg (69%) of 21a as a brown solid. Mp 144-146 °C. EM (ES, positive mode): m/z 195 (M+H)^+. \(^1\)H NMR (DMSO-d_6, 300 MHz) \(\delta\) (enol form): 0.94-1.2 (m, 6H, H-1’, H-2’, H-3’, H-4’, H-5’, H-6’), 1.62-1.77 (m, 6H, H-2’, H-3’, H-4’, H-5’, H-6’, H-5), 2.02-2.25 (m, 4H, H-4, H-6), 5.18 (s, 1H, H-2), 11.17 (br s, 1H, OH).

5-Benzylcyclohexane-1,3-dione (21b).

Following the described procedure for the synthesis of 21a, a mixture of diethyl malonate (0.65 mL, 6.86 mmol), 25 % sodium ethoxide in ethanol (15 mL, 6.86 mmol) and (E)-5-phenylpent-3-en-2-one (20b)\(^2\) (1.0 g, 6.25 mmol) in ethanol (2.2 mL) was stirred at reflux for 2 h before treatment with 6M NaOH (5 mL, 22 mmol) to yield 420 mg (33%) of 21b as a brown oil. EM (ES, positive mode): m/z 203 (M+H)^+. \(^1\)H NMR (DMSO-d_6, 300 MHz) \(\delta\) (enol form): 2.03-2.16 (m, 4H, H-4, H-6), 2.24 (m, 1H, H-5), 2.64 (d, 2H, \(J = 6.8\) Hz, CH_2), 5.18 (s, 1H, H-2), 7.17-7.33 (m, 5H, Ar), 11.30 (br s, 1H, OH).

4-Acetyl-[1,1’-bi(cyclohexane)]-3,5-dione (22a).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 21a (300 mg, 1.54 mmol), acetyl chloride (238 µL, 3.09 mmol), anhydrous K_2CO_3 (469 mg, 3.39 mmol), 1,2,4-triazole (43 mg, 0.62 mmol) and tetrabutyl ammonium bromide (248 mg, 0.77 mmol) in anhydrous DMF (4 mL) to yield 134 mg (36%) of 22a as a yellow solid. Mp 52-54 °C. EM (ES, positive mode): 237 m/z (M+H)^+. \(^1\)H-NMR (DMSO-d_6, 300 MHz) \(\delta\) (enol form): 1.12 (m, 6H, H-1’, H-2’, H-3’, H-4’, H-5’, H-6’), 1.70 (m, 5H, H-2’, H-3’, H-4’, H-5’, H-6’), 1.87 (m, 1H, H-5), 2.51 (s, 3H, CH_3), 2.50-2.64 (m, 4H, H-4, H-6).

2-Acetyl-5-benzylcyclohexane-1,3-dione (22b).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 21b (100 mg, 0.49 mmol), acetyl chloride (75 µL, 0.98 mmol), anhydrous K_2CO_3 (150 mg, 1.08 mmol), 1,2,4-triazole (14 mg, 0.20 mmol) and tetrabutyl ammonium bromide (79 mg, 0.25 mmol) in anhydrous DMF (4 mL) to yield 46 mg (38 %) of 22b as a yellow oil. EM (ES, positive mode): 245 m/z (M+H)^+. \(^1\)H-NMR (DMSO-d_6, 300 MHz) \(\delta\) (enol form): 2.17-2.43 (m, 5H, H-4, H-6), 2.48 (s, 3H, CH_3), 2.64 (d, 2H, \(J = 5.5\) Hz, CH_2), 3.51 (dd, 2H, \(J = 6.7, 1.7\) Hz, H-4, H-6), 7.20 (m, 3H, Ar), 7.30 (m, 2H, Ar).

4-(1-((2-Methoxyphenyl)amino)ethylidene)-[1,1’-bi(cyclohexane)]-3,5-dione (23a).
A solution of \textit{22a} (100 mg, 0.42 mmol) and \textit{o}-anisidine (72 µL, 0.63 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 °C overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 128 mg (89%) of \textit{23a} as a white solid. Mp 131-133 °C.

EM (ES, positive mode): m/z 342 (M+H) +. \textit{^1}H NMR (DMSO-\textit{d}_6, 400 MHz) δ: 0.93-1.20 (m, 6H, H-1’, H-2’, H-3’, H-4’, H-5’, H-6’), 1.60-1.77 (m, 6H, H-5, H-2’, H-3’, H-4’, H-5’, H-6’), 2.30 (m, 2H, H-4, H-6), 2.36 (s, 3H, CH\textsubscript{3}), 2.43 (m, 2H, H-4, H-6), 3.82 (s, 3H, OCH\textsubscript{3}), 7.03 (t, 1H, J = 7.7 Hz, Ar), 7.18 (d, 1H, J = 8.1 Hz, Ar), 7.29 (d, 1H, J = 7.5 Hz, Ar), 7.37 (t, 1H, J = 7.8 Hz, Ar), 14.74 (br s, 1H, NH). \textit{^{13}C} NMR (DMSO-\textit{d}_6, 100 MHz) δ: 19.5 (CH\textsubscript{3}), 25.9 (C-3’, C-5’), 26.1 (C-4’), 29.2 (C-2’, C-6’), 36.9 (C-5), 40.8 (C-1’), 42.2 (C-4, C-6), 55.8 (OCH\textsubscript{3}), 108.4 (NHC=\textit{C}), 112.3, 120.6, 124.5, 126.9, 129.1, 153.1 (Ar), 172.1 (NHC=\textit{C}). Anal. calc. for (C\textsubscript{21}H\textsubscript{27}NO\textsubscript{3}): C, 73.87; H, 7.97; N, 4.10. Found: C, 74.05; H, 8.15; N, 4.09.

5-Benzyl-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (\textit{23b}).

A solution of \textit{22b} (40 mg, 0.16 mmol) and \textit{o}-anisidine (38 µL mg, 0.25 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 °C overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 41 mg (73%) of \textit{23b} as a white solid. Mp 165-167 °C.

EM (ES, positive mode): m/z 350 (M+H) +. \textit{^1}H NMR (DMSO-\textit{d}_6, 400 MHz) δ: 2.27 (m, 2H, H-4, H-6), 2.33 (m, 1H, H-5), 2.35 (s, 3H, CH\textsubscript{3}), 2.38 (m, 2H, H-4, H-6), 2.60 (d, 2H, J = 5.6 Hz, CH\textsubscript{2}), 3.81 (s, 3H, OCH\textsubscript{3}), 7.02 (m, 1H, J = 7.6, 1.2 Hz, Ar), 7.18 (m, 2H, Ar), 7.22 (m, 2H, Ar), 7.28 (m, 2H, Ar), 7.31 (m, 1H, Ar), 7.37 (m, 1H, Ar), 14.72 (br s, 1H, NH). \textit{^{13}C} NMR (DMSO-\textit{d}_6, 100 MHz) δ: 19.5 (CH\textsubscript{3}), 25.9 (C-3’, C-5’), 26.1 (C-4’), 29.2 (C-2’, C-6’), 36.9 (C-5), 40.8 (C-1’), 42.2 (C-4, C-6), 55.8 (OCH\textsubscript{3}), 108.4 (NHC=\textit{C}), 112.3, 120.6, 124.5, 126.9, 129.1, 153.1 (Ar), 172.1 (NHC=\textit{C}). Anal. calc. for (C\textsubscript{22}H\textsubscript{23}NO\textsubscript{3}): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.86; H, 6.71; N, 4.08.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5,5-dimethylcyclohexane-1,3-dione (\textit{23c}).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (\textit{22c}) (100 mg, 0.59 mmol) and \textit{o}-anisidine (93 µL, 0.82 mmol) in toluene to yield 134 mg (79%) of \textit{23c} as a white solid. Mp 101-103 °C.

EM (ES, positive mode): m/z 288 (M+H) +. \textit{^1}H -NMR (DMSO-\textit{d}_6, 500 MHz) δ: 0.98 (s, 6H, CH\textsubscript{3}), 2.36 (m, 7H, H-4, H-6, CH\textsubscript{3}), 3.83 (s, 3H, OCH\textsubscript{3}), 7.01 (t, 1H, J = 7.5 Hz, Ar), 7.17 (d, 1 H, J = 8.1 Hz, Ar), 7.33 (m, S10
13C -NMR (DMSO-d$_6$, 125 MHz) δ: 20.0 (CH$_3$), 28.2 (CH$_3$), 30.2 (C-5), 52.7 (C-4, C-6), 56.2 (OCH$_3$), 108.3 (NHC=C), 112.7, 121.1, 124.6, 127.3, 129.7, 153.4 (Ar), 172.2 (NHC=C).
Anal. calc. for (C$_7$H$_7$NO$_3$): C, 71.06; H, 7.37; N, 4.87. Found: C, 71.24; H, 7.61; N, 4.94.

5-(3-Methoxyphenyl)cyclohexane-1,3-dione (24f)

Following the procedure describe for the synthesis of 20a, reaction of 3-methoxybenzaldehyde (0.97 mL, 8 mmol) and NaOH (4 mL) in acetone/water (3.2 mL/4 mL) afforded a residue that was purified by flash column chromatography (hexane/ethyl acetate 2:1) to yield 1.33 g (83%) of (E)-4-(3-methoxyphenyl)but-3-en-2-one as a yellow oil. EM (ES, positive mode): m/z 177 (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ: 2.33 (s, 3H, CH$_3$), 3.80 (s, 3H, OCH$_3$), 6.80 (d, 1H, $J = 16.4$ Hz, H-3), 6.98-7.02 (m, 1H, Ar), 7.28-7.30 (m, 3H, Ar), 7.59 (d, 1H, $J = 16.4$ Hz, H-4). Then, following the described procedure for the synthesis of 21a, a mixture of diethyl malonate (0.65 mL, 6.87 mmol), 25 % sodium ethoxide in ethanol (1.5mL, 8.87 mmol) and (E)-4-(3-methoxyphenyl)but-3-en-2-one (1.10 g, 6.24 mmol) in ethanol (2 mL) was stirred at reflux for 2 h before treatment with 6M NaOH (5 mL, 22 mmol) to yield 1.24 g (91%) of 24f as a pale brown solid. Mp 85-87 °C. EM (ES, positive mode): m/z 219 (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.29 (m, 2H, H-4, H-6), 2.54-2.73 (m, 2H, H-4, H-6), 3.25 (m, 1H, H-5), 3.74 (s, 3H, OCH$_3$), 5.28 (s, 1H, H-2), 6.78-6.92 (m, 3H, Ar), 7.21-7.26 (m, 1H, Ar), 11.17 (br s, 1H, OH).

2-Acetyl-5-(o-tolyl)cyclohexane-1,3-dione (25a).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(o-tolyl)cyclohexane-1,3-dione (24a)3 (100 mg, 0.49 mmol), acetylchloride (75 µL, 0.98 mmol), anhydrous K$_2$CO$_3$ (150 mg, 1.08 mmol), 1,2,4-triazole (14 mg, 0.20 mmol) and tetrabutyl ammonium bromide (79 mg, 0.25 mmol) in anhydrous acetonitrile (4 mL) to yield 38 mg (35 %) of 25a as a yellow solid. Mp 165-167 °C. EM (ES, positive mode): 245 m/z (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.31 (s, 3H, CH$_3$), 2.56 (s, 3H, CH$_3$), 2.63 (m, 2H, H-4, H-6), 2.93 (m, 2H, H-4, H-6), 3.60 (m, 1H, H-5), 7.11-7.33 (m, 4H, Ar).

2-Acetyl-5-(2-fluorophenyl)cyclohexane-1,3-dione (25b).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(2-fluorophenyl)cyclohexane-1,3-dione (24b)3 (100 mg, 0.49 mmol), acetylchloride (75 µL, 0.98 mmol), anhydrous K$_2$CO$_3$ (150 mg, 1.08 mmol), 1,2,4-triazole (14 mg, 0.20 mmol) and tetrabutyl ammonium bromide (79 mg, 0.25 mmol) in anhydrous acetonitrile (4 mL) to yield 38 mg (35 %) of 25b as a yellow solid. Mp 165-167 °C. EM (ES, positive mode): 245 m/z (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.31 (s, 3H, CH$_3$), 2.56 (s, 3H, CH$_3$), 2.63 (m, 2H, H-4, H-6), 2.93 (m, 2H, H-4, H-6), 3.60 (m, 1H, H-5), 7.11-7.33 (m, 4H, Ar).
(79 mg, 0.25 mmol) in anhydrous acetonitrile (4 mL) to yield 59 mg (48%) of **25b** as a yellow solid. Mp 71-73°C. EM (ES, positive mode): 249 m/z (M+H)^+. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.55 (s, 3H, CH$_3$), 2.66-2.73 (m, 2H, H-4, H-6), 2.92-3.08 (m, 2H, H-4, H-6), 3.68 (m, 1H, H-5), 7.16-7.44 (m, 4H, Ar).

2-Acetyl-5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (25c).

Following the described procedure for the synthesis of **12**, a microwave vial was charged with 5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (**24c**) (400 mg, 1.85 mmol), acetyl chloride (0.28 mL, 3.70 mmol), anhydrous K$_2$CO$_3$ (563 mg, 4.07 mmol), 1,2,4-triazole (51 mg, 0.74 mmol) and tetrabutyl ammonium bromide (298 mg, 0.93 mmol) in anhydrous acetonitrile (5 mL) to yield 139 mg (29%) of **25c** as a white solid. Mp 140-142 ºC. EM (ES, positive mode): 259 m/z (M+H)^+. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.37 (s, 6H, CH$_3$), 2.56 (s, 3H, CH$_3$), 2.62-2.71 (m, 2H, H-4, H-6), 3.25 (m, 2H, H-4, H-6), 3.79 (m, 1H, H-5), 6.98-7.02 (m, 3H, Ar).

2-Acetyl-5-(2,6-difluorophenyl)cyclohexane-1,3-dione (25d).

Following the described procedure for the synthesis of **12**, a microwave vial was charged with 5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (**24d**) (400 mg, 1.78 mmol), acetyl chloride (0.26 mL, 3.57 mmol), anhydrous K$_2$CO$_3$ (543 mg, 3.93 mmol), 1,2,4-triazole (49 mg, 0.71 mmol) and tetrabutyl ammonium bromide (287 mg, 0.89 mmol) in anhydrous acetonitrile (5 mL) to yield 66 mg (14%) of **25d** as a white solid. Mp 88-90 ºC. EM (ES, positive mode): 267 m/z (M+H)^+. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.54 (s, 3H, CH$_3$), 2.66 (m, 2H, H-4, H-6), 3.04 (m, 2H, H-4, H-6), 3.78 (m, 1H, H-5), 7.08-7.41 (m, 3H, Ar).

2-Acetyl-5-(m-toly)cyclohexane-1,3-dione (25e)

Following the described procedure for the synthesis of **12**, a microwave vial was charged with 5-(m-toly)cyclohexane-1,3-dione (**24e**) (200 mg, 1.00 mmol), acetyl chloride (0.15 mL, 2.00 mmol), anhydrous K$_2$CO$_3$ (304 mg, 2.20 mmol), 1,2,4-triazole (28 mg, 0.40 mmol) and tetrabutyl ammonium bromide (161 mg, 0.50 mmol) in anhydrous acetonitrile (4 mL) to yield 110 mg (45%) of **25e** as a white solid. Mp 68-70 ºC. EM (ES, positive mode): 245 m/z (M+H)^+. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.27 (s, 3H, CH$_3$), 2.55 (s, 3H, CH$_3$), 2.62-2.69 (m, 2H, H-4, H-6), 2.91 (m, 2H, H-4, H-6), 3.37 (m, 1H, H-5), 7.05-7.25 (m, 4H, Ar).

2-Acetyl-5-(3-methoxyphenyl)cyclohexane-1,3-dione (25f)
Following the described procedure for the synthesis of 12, a microwave vial was charged with 24f (200 mg, 0.98 mmol), acetyl chloride (0.14 mL, 1.84 mmol), anhydrous K$_2$CO$_3$ (276 mg, 2.00 mmol), 1,2,4-triazole (24 mg, 0.36 mmol) and tetrabutyl ammonium bromide (148 mg, 0.46 mmol) in anhydrous acetonitrile (4 mL) to yield 60 mg (50%) of 25f as a white solid. Mp 110-112 °C. EM (ES, positive mode): 261 m/z (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.55 (s, 3H, CH$_3$), 2.61 (m, 2H, H-4, H-6), 3.39 (s, 3H, OCH$_3$), 6.80-6.91 (m, 3H, Ar), 7.22-7.28 (m, 1H, Ar).

2-Acetyl-5-(p-tolyl)cyclohexane-1,3-dione (25g)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(p-tolyl)cyclohexane-1,3-dione (24g) (200 mg, 1.00 mmol), acetyl chloride (0.15 mL, 2.00 mmol), anhydrous K$_2$CO$_3$ (304 mg, 2.20 mmol), 1,2,4-triazole (28 mg, 0.40 mmol) and tetrabutyl ammonium bromide (161 mg, 0.50 mmol) in anhydrous acetonitrile (4 mL) to yield 217 mg (45%) of 25g as a white solid. Mp 98-100 °C. EM (ES, positive mode): 245 m/z (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.27 (s, 3H, CH$_3$), 2.54 (s, 3H, CH$_3$), 2.64-2.69 (m, 2H, H-4, H-6), 2.91 (m, 2H, H-4, H-6), 3.36 (m, 1H, H-5), 7.14 (m, 2H, H-4, H-6), 7.21 (m, 2H, Ar).

2-Acetyl-5-(4-methoxyphenyl)cyclohexane-1,3-dione (25h)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-methoxyphenyl)cyclohexane-1,3-dione (24h) (300 mg, 1.38 mmol), acetyl chloride (0.21 mL, 2.76 mmol), anhydrous K$_2$CO$_3$ (414 mg, 3.00 mmol), 1,2,4-triazole (36 mg, 0.54 mmol) and tetrabutyl ammonium bromide (222 mg, 0.69 mmol) in anhydrous acetonitrile (5.5 mL) to yield 180 mg (50%) of 25h as a white solid. Mp 85-87 °C. EM (ES, positive mode): 261 m/z (M+H)$^+$. 1H NMR (DMSO-d$_6$, 300 MHz) δ (enol form): 2.53 (s, 3H, CH$_3$), 2.66 (m, 2H, H-4, H-6), 2.88 (m, 2H, H-4, H-6), 3.34 (m, 1H, H-5), 3.72 (s, 4H, H-2, OCH$_3$), 6.88 (d, 2H, $J = 8.6$ Hz, Ar), 7.23 (d, 2H, $J = 8.7$ Hz, Ar).

2-Acetyl-5-(4-chlorophenyl)cyclohexane-1,3-dione (25i)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-chlorophenyl)cyclohexane-1,3-dione (24i) (200 mg, 0.90 mmol), acetyl chloride (0.14 mL, 1.80 mmol), anhydrous K$_2$CO$_3$ (274 mg, 1.98 mmol), 1,2,4-triazole (25 mg, 0.36 mmol) and tetrabutyl ammonium bromide (145 mg, 0.45 mmol) in anhydrous acetonitrile (4 mL) to yield 352 mg (74%) of 25i as a white solid. Mp 140-142 °C. EM (ES, positive mode): 265 m/z (M+H)$^+$ with a Cl isotopic pattern. 1H NMR (DMSO-d$_6$, 300 MHz)
δ (enol form): 2.55 (s, 3H, CH₃), 2.71 (m, 2H, H-4, H-6), 2.90 (m, 2H, H-4, H-6), 3.43 (m, 1H, H-5), 7.35-7.42 (m, 4H, Ar).

2-Acetyl-5-(4-fluorophenyl)cyclohexane-1,3-dione (25j)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-fluorophenyl)cyclohexane-1,3-dione (24j) (100 mg, 0.48 mmol), acetyl chloride (71 µL, 0.97 mmol), anhydrous K₂CO₃ (138 mg, 1.06 mmol), 1,2,4-triazole (13 mg, 0.19 mmol) and tetrabutyl ammonium bromide (77 mg, 0.24 mmol) in anhydrous acetonitrile (4 mL) to yield 71 mg (60%) of 25j as a white solid. Mp 110-112°C. EM (ES, positive mode): 249 m/z (M+H)+. ¹H NMR (DMSO-d₆, 300 MHz) δ (enol form): 2.55 (s, 3H, CH₃), 2.71 (m, 2H, H-4, H-6), 2.95 (m, 2H, H-4, H-6), 3.40 (m, 1H, H-5), 7.23-7.35 (m, 4H, Ar).

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(o-tolyl)cyclohexane-1,3-dione (26a).

A solution of 25a (90 mg, 0.37 mmol) and o-anisidine (63 µL, 0.55 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 °C overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 60 mg (46%) of 26a as a white solid. Mp 142-144 °C. EM (ES, positive mode): m/z 350 (M+H)+. ¹H NMR (DMSO-d₆, 400 MHz) δ: 2.32 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 2.55 (m, 2H, H-4, H-6), 2.80 (m, 2H, H-4, H-6), 3.51 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 7.05 (m, 1H, J = 7.7, 1.2 Hz, Ar), 7.17 (m, 4H, Ar), 7.32 (m, 2H, Ar), 7.39 (m, 1H, J = 8.0, 1.7 Hz, Ar), 14.79 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 19.7 (CH₃), 19.9 (CH₃), 32.1 (C-5), 45.1 (C-4, C-6), 55.8 (OCH₃), 108.3 (NHC=C), 112.3, 120.6, 124.5, 125.2, 126.2, 126.3, 126.9, 129.2, 130.3, 135.2, 141.4, 153.1 (Ar), 174.0 (NHC=C). Anal. calc. for (C₂₂H₂₃NO₃): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.78; H, 6.73; N, 3.84.

5-(2-Fluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26b).

A solution of 25b (80 mg, 0.32 mmol) and o-anisidine (55 µL, 0.48 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 °C overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 80 mg (71%) of 26b as a white solid. Mp 133-135 °C. EM (ES, positive mode): m/z 354 (M+H)+. ¹H NMR (DMSO-d₆, 400 MHz) δ: 2.41 (s, 3H, CH₃), 2.60-2.63 (m, 2H, H-4, H-6), 2.84 (m, 2H, H-4, H-6), 3.60 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 7.04 (m, 1H, J = 7.6, 1.2 Hz, Ar), 7.20 (m, 3H, Ar), 7.32 (m, 2H, Ar), 7.39 (dd, 1H, J = 7.8, 1.7 Hz, Ar), 7.40 (dd, 1H, J = 7.8, 1.7 Hz, Ar), 14.75 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 19.7 (CH₃), 29.6 (C-5), 45.0 (C-4, C-6), 56.1
(OCH₃), 108.1 (NHC=C), 108.3, 112.3, 115.3, 120.6, 124.4, 126.9, 127.8, 128.4, 129.3, 129.9, 153.1, 161.4 (Ar), 172.7 (NHC=C). Anal. calc. for (C₂₁H₂₀FNO₃): C, 71.37; H, 5.70; N, 3.96. Found: C, 71.09; H, 5.98; N, 4.02.

5-(2,6-Dimethylphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26c).

A solution of 25c (130 mg, 0.50 mmol) and o-anisidine (85 µL, 0.75 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 ºC overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 120 mg (66%) of 26c as a pale brown solid. Mp 140-142 ºC. EM (ES, positive mode): m/z 364 (M+H)⁺. ¹H NMR (DMSO-d₆, 400 MHz) δ: 2.38 (s, 6H, CH₃), 2.42 (s, 3H, CH₃), 2.59 (m, 2H, H-4, H-6), 3.17 (m, 2H, H-4, H-6), 3.77 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 6.99 (m, 3H, Ar), 7.05 (t, 1H, J = 7.6 Hz, Ar), 7.20 (d, 1H, J = 8.3 Hz, Ar), 7.32 (dd, 1H, J = 7.6, 1.7 Hz, Ar), 7.39 (m, 1H, Ar), 14.81 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 19.8 (CH₃), 21.5 (CH₃), 32.6 (C-5), 42.7 (C-4, C-6), 55.8 (OCH₃), 108.3 (NHC=C), 112.3, 120.6, 124.5, 126.2, 126.9, 129.2, 129.7, 136.1, 138.1, 153.1 (Ar), 172.7 (NHC=C). Anal. calc. for (C₂₂H₂₃NO₄): C, 76.01; H, 6.93; N, 3.85. Found: C, 76.30; H, 7.05; N, 3.79.

5-(2,6-Difluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26d).

A solution of 25d (55 mg, 0.21 mmol) and o-anisidine (36 µL, 0.32 mmol) in toluene was placed in an Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 ºC overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 44 mg (56%) of 26d as a white solid. Mp 141-142 ºC. EM (ES, positive mode): m/z 372 (M+H)⁺. ¹H NMR (DMSO-d₆, 400 MHz) δ: 2.41 (s, 3H, CH₃), 2.55-2.60 (m, 2H, H-4, H-6), 2.96-3.03 (m, 2H, H-4, H-6), 3.71 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 7.04 (m, 1H, J = 7.6, 1.2 Hz, Ar), 7.10 (t, 2H, J = 8.6 Hz, Ar), 7.20 (dd, 1H, J = 8.4, 1.2 Hz, Ar), 7.32 (dd, 1H, J = 7.8, 1.7 Hz, Ar), 7.36 (m, 1H, Ar), 7.40 (m, 1H, Ar), 14.72 (br s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 19.8 (CH₃), 27.0 (C-5), 43.0 (C-4, C-6), 55.8 (OCH₃), 108.2 (NHC=C), 112.0, 112.3, 117.5, 120.6, 124.4, 126.9, 129.27, 153.1, 159.6, 162.1 (Ar), 172.9 (NHC=C). Anal. calc. for (C₂₂H₂₅F₂NO₃): C, 67.92; H, 5.16; N, 3.77. Found: C, 67.85; H, 4.98; N, 3.67.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(m-tolyl)cyclohexane-1,3-dione (26e).
Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25e (50 mg, 0.20 mmol) and o-anisidine (42 µL, 0.37 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 54 mg (75%) of 26e as a white solid. Mp 107-109 ºC. EM (ES, positive mode): m/z 350 (M+H)+. 1H NMR (DMSO-d$_6$, 300 MHz) δ: 2.30 (s, 3H, CH$_3$), 2.41 (s, 3H, CH$_3$), 2.57-2.61 (m, 2H, H-4, H-6), 2.75-2.85 (m, 2H, H-4, H-6), 3.31 (m, 1H, H-5), 3.84 (s, 3H, OCH$_3$), 7.04 (m, 2H, Ar), 7.13 (m, 2H, Ar), 7.20 (m, 2H, Ar), 7.32 (dd, 1H, J = 7.7, 1.7 Hz, Ar), 7.39 (m, 1H, Ar), 14.78 (br s, 1H, NH). 13C NMR (DMSO-d$_6$, 100 MHz) δ: 19.5 (CH$_3$), 20.9 (CH$_3$), 35.9 (C-5), 46.2 (C-4, C-6), 55.6 (OCH$_3$), 108.2 (NHC=CH), 112.1, 120.4, 123.6, 124.3, 126.7, 127.0, 127.2, 128.2, 129.0, 137.4, 143.3, 152.9 (Ar), 172.3 (NHC=CH). Anal. calc. for (C$_{22}$H$_{23}$NO$_3$): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.66; H, 6.90; N, 4.02.

5-(3-Methoxyphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25f (60 mg, 0.23 mmol) and o-anisidine (39 µL, 0.35 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 44 mg (52%) of 26f as a white solid. Mp 127-129 ºC. EM (ES, positive mode): m/z 366 (M+H)+. 1H NMR (DMSO-d$_6$, 500 MHz) δ: 2.40 (s, 3H, CH$_3$), 2.56-2.63 (m, 2H, H-4, H-6), 2.78 (m, 2H, H-4, H-6), 3.38 (m, 1H, H-5), 3.75 (s, 3H, OCH$_3$), 6.80 (m, 1H, Ar), 6.90 (m, 2H, Ar), 7.04 (m, 1H, Ar), 7.20 (dd, 1H, J = 8.4, 1.2 Hz, Ar), 7.24 (t, 1H, J = 8.1 Hz, Ar), 7.31 (dd, 1H, J = 7.8, 1.7 Hz, Ar), 7.38 (m, 1H, J = 7.6, 1.7 Hz, Ar), 14.77 (br s, 1H, NH). 13C NMR (DMSO-d$_6$, 125 MHz) δ: 19.7 (CH$_3$), 36.1 (C-5), 45.4, 46.3 (C-4, C-6), 54.9 (OCH$_3$), 55.8 (OCH$_3$), 108.4 (NHC=CH), 111.8, 112.3, 112.68, 118.9, 120.6, 124.5, 126.9, 129.2, 129.5, 145.2, 153.0, 159.4 (Ar), 172.4 (NHC=CH). Anal. calc. for (C$_{22}$H$_{23}$NO$_4$): C, 72.31; H, 6.31; N, 3.94. Found: C, 72.43; H, 6.31; N, 3.84.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(p-tolyl)cyclohexane-1,3-dione (26g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25g (50 mg, 0.20 mmol) and o-anisidine (35 µL, 0.30 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 41 mg (59%) of 26g as a white solid. Mp 172-174 ºC. EM (ES, positive mode): m/z 350 (M+H)+. 1H NMR (DMSO-d$_6$, 300 MHz) δ: 2.28 (s, 3H, CH$_3$), 2.40 (s, 3H, CH$_3$), 2.56-2.61 (m, 2H, H-4, H-6), 2.78 (m, 2H, H-4, H-6), 3.27 (m, 1H, H-5), 3.83 (s, 3H, OCH$_3$), 7.05 (m, 1H, J = 7.6, 1.2 Hz, Ar), 7.13 (d, 2H, J = 7.9, 1.2 Hz, Ar),
7.21 (m, 3H, Ar), 7.31 (dd, 1H, J = 7.7, 1.7 Hz, Ar), 7.39 (m, 1H, Ar), 14.78 (br s, 1H, NH).^{13}C NMR (DMSO-d$_6$, 100 MHz) δ: 19.7 (CH$_3$), 20.6 (CH$_3$), 35.7 (C-5), 46.2 (C-4, C-6), 55.8 (OCH$_3$), 108.4 (NHC=C), 112.3, 120.6, 124.5, 126.6, 126.9, 129.0, 129.2, 135.5, 140.5, 153.1 (Ar), 172.4 (NHC=C). Anal. calc. for (C$_{22}$H$_{23}$NO$_3$): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.59; H, 6.39; N, 3.82.

5-(4-Methoxyphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26h).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25h (60 mg, 0.23 mmol) and o-anisidine (39 µL, 0.35 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 33 mg (39%) of 26h as a white solid. Mp 140-142 ºC. EM (ES, positive mode): m/z 366 (M+H)$^+$.\(^1^H\) NMR (DMSO-d$_6$, 500 MHz) δ: 2.40 (s, 3H, CH$_3$), 2.55-2.61 (m, 2H, H-4, H-6), 2.77 (m, 2H, H-4, H-6), 3.29 (m, 1H, H-5), 3.73 (s, 3H, OCH$_3$), 3.83 (s, 3H, OCH$_3$), 6.89 (m, 2H, Ar), 7.04 (m, 1H, J = 7.6, 1.2 Hz, Ar), 7.19 (dd, 1H, J = 8.3, 1.2 Hz, Ar), 7.24 (m, 2H, Ar), 7.31 (dd, 1H, J = 7.8, 1.6 Hz, Ar), 7.38 (m, 1H, Ar), 14.79 (br s, 1H, NH).\(^{13}C\) NMR (DMSO-d$_6$, 125 MHz) δ: 19.7 (CH$_3$), 35.3 (C-5), 46.3 (C-4, C-6), 55.0 (OCH$_3$), 55.8 (OCH$_3$), 108.5 (NHC=C), 112.3, 113.9, 120.6, 124.5, 126.9, 127.7, 129.2, 135.5, 153.1, 157.9 (Ar), 172.4 (NHC=C). Anal. calc. for (C$_{22}$H$_{23}$NO$_4$): C, 72.31; H, 6.34; N, 3.83. Found: C, 72.38; H, 6.29; N, 4.01.

5-(4-Chlorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26i).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25i (60 mg, 0.20 mmol) and o-anisidine (38 µL, 0.34 mmol) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 70 mg (82%) of 26i as a white solid. Mp 138-140 ºC. EM (ES, positive mode): m/z 370 (M+H)$^+$.\(^1^H\) NMR (DMSO-d$_6$, 300 MHz) δ: 2.40 (s, 3H, CH$_3$), 2.57-2.63 (m, 2H, H-4, H-6), 2.81 (m, 2H, 2 H-4, H-6), 3.36 (m, 1H, H-5), 3.83 (s, 3H, OCH$_3$), 7.04 (m, 1H, J = 7.6, 1.3 Hz, Ar), 7.20 (dd, 1H, J = 8.3, 1.3 Hz, Ar), 7.32 (dd, 1H, J = 7.8, 1.5 Hz, Ar), 7.37 (m, 5H, Ar), 14.76 (br s, 1H, NH).\(^{13}C\) NMR (DMSO-d$_6$, 100 MHz) δ: 19.7 (CH$_3$), 35.5 (C-5), 45.6 (C-4, C-6), 55.8 (OCH$_3$), 108.4 (NHC=C), 112.3, 120.1, 124.5, 126.9, 128.4, 128.7, 129.2, 131.0, 142.5, 153.1 (Ar), 172.5 (NHC=C). Anal. calc. for (C$_{21}$H$_{20}$ClNO$_3$): C, 68.20; H, 5.45; N, 3.79. Found: C, 68.31; H, 5.64; N, 3.88.

5-(4-Fluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26j).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 25j (50 mg, 0.17 mmol) and o-anisidine (28 µL, 0.25 mmol) in toluene. The
residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 60 mg (99%) of
26j as a white solid. Mp 126-128 ºC. EM (ES, positive mode): m/z 354 (M+H)+. 1H NMR (DMSO-d6, 500
MHz) δ: 2.40 (s, 3H, CH3), 2.56-2.62 (m, 2H, H-4, H-6), 2.72-2.85 (m, 2H, H-4, H-6), 3.37 (m, 1H, H-5),
3.83 (s, 3H, OCH3), 7.03 (m, 1H, J = 7.6, 1.3 Hz, Ar), 7.15 (m, 2H, Ar), 7.19 (dd, 1H, J = 8.5, 1.3 Hz, Ar),
7.31 (dd, 1H, J = 7.8, 1.6 Hz, Ar), 7.37 (m, 3H, Ar), 14.79 (br s, 1H, NH). 13C NMR (DMSO-d6, 125 MHz) δ:
19.7 (CH3), 35.4 (C-5), 45.6, 46.3 (C-4, C-6), 55.8 (OCH3), 108.4 (NHC=C), 112.3, 115.2, 120.6, 124.5,
126.9, 128.6, 129.2, 139.7, 139.7, 153.1, 159.9, 161.8 (Ar), 172.5 (NHC=C). Anal. calc. for (C21H20FNO3): C,
71.37; H, 5.70; N, 3.96. Found: C, 71.62; H, 5.84; N, 4.05.

5-(3-Methoxyphenyl)-2-(1-(o-tolylamino)ethylidene)cyclohexane-1,3-dione (26k).

A solution of 25k (250 mg, 0.96 mmol) and o-tolylaniline (154 µL, 1.44 mmol) in toluene was placed in an
Ace pressure tube. Then, 4 Å molecular sieves were added, the vessel was sealed and heated at 110 ºC
overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by
flash chromatography (hexane/ethyl acetate) to yield 148 mg (42%) of 26k as a white solid. Mp 105-107 ºC.
EM (ES, positive mode): m/z 350 (M+H)+. 1H NMR (DMSO-d6, 300 MHz) δ: 2.20 (s, 3H, CH3), 2.37 (s, 3H,
CH3), 2.58-2.64 (m, 2H, H-4, H-6), 2.79-2.89 (m, 2H, H-4, H-6), 3.39 (m, 1H, H-5), 3.75 (s, 3H, OCH3),
6.79-6.82 (m, 1H, Ar), 6.91 (m, 2H, Ar), 7.22-7.35 (m, 4H, Ar), 7.40 (m, 1H, Ar), 14.90 (br s, 1H, NH). 13C
NMR (DMSO-d6, 75 MHz) δ: 17.4 (CH3), 19.6 (CH3), 36.2 (C-5), 45.7 (C-4, C-6), 55.0 (OCH3), 108.2
(NHC=C), 111.8, 112.687, 118.9, 126.5, 126.9, 128.1, 129.5, 131.0, 133.3, 135.1, 145.1, 159.4 (Ar), 172.6
(NHC=C). Anal. calc. for (C22H23NO3): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.44; H, 6.51; N, 3.98.

5-(3-Hydroxyphenyl)-2-(1-(o-tolylamino)ethylidene)cyclohexane-1,3-dione (26l).

To a cooled solution of 26k (150 mg, 0.43 mmol) in CH2Cl2, BBr3 (800 µL, 0.78 mmol) was added and the
mixture was stirred overnight at room temperature. The precipitate was filtered, washed with CH2Cl2 and
purified by flash chromatography (hexane/ethyl acetate) to yield 34 mg (23%) of 26l as a yellow oil. EM (ES,
positive mode): m/z 336 (M+H)+. 1H NMR (DMSO-d6, 400 MHz) δ: 2.20 (s, 3H, CH3), 2.37 (s, 3H, CH3),
2.60 (m, 2H, H-4, H-6), 2.77 (m, 2H, H-4, H-6), 3.25 (m, 1H, H-5), 6.62 (ddd, 1H, J = 8.0, 2.4, 0.9 Hz, Ar),
6.70 (t, 1H, J= 1.9 Hz, Ar), 6.75 (m, 1H, Ar), 7.11 (t, 1H, J = 7.8 Hz, Ar), 7.26 (m, 1H, Ar), 7.32 (m, 2H, Ar),
7.40 (m, 1H, Ar), 9.35 (br s, 1H, OH), 14.91 (br s, 1H, NH). 13C NMR (DMSO-d6, 100 MHz) δ: 17.5 (CH3),
19.7 (CH3), 36.0 (C-5), 45.8 (C-4, C-6), 108.2 (NHC=C) 113.4, 113.6, 117.3, 126.6, 126.9, 128.1, 129.4,
131.0, 133.3, 135.2, 145.0, 157.4 (Ar), 172.6 (NH\textsubscript{C}=C). Anal. calc. for (C\textsubscript{21}H\textsubscript{21}NO\textsubscript{3}): C, 75.20; H, 6.31; N, 4.18. Found: C, 74.98; H, 6.33; N, 4.05.

References

Table S1. SMILES strings from the VS hits tested.

<table>
<thead>
<tr>
<th>Compound</th>
<th>SMILES string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hit 1, compound 9</td>
<td>O=C(C(C1=CC=CC=CC)=C1)CC/2=O)C2=C(NC3=CC=CC=C3O)CC</td>
</tr>
<tr>
<td>Hit 2</td>
<td>O=C(C1=C(N2)C3=CC=CC=C3S1)N(CCN4CCOCC4)C2=S</td>
</tr>
<tr>
<td>Hit 3</td>
<td>CC1=CC(N/C(C)=C2C(C(C=CC=C3)=C3C\2=O)=O)=NO1</td>
</tr>
<tr>
<td>Hit 4</td>
<td>O=C(NC1=CC=NC=C1)C(C(N2)=O)=C(O)C3=C2CCCC3</td>
</tr>
<tr>
<td>Hit 5</td>
<td>NC1=NC(NC2=CC=CC=C2)=C3C(CC(C4=CC=CC=C4)CC3=N1)=O</td>
</tr>
<tr>
<td>Hit 6</td>
<td>OC1=C2C(N=CN2CC3=CC=CC=C3)=NC(N4CCOCC4)=N1</td>
</tr>
</tbody>
</table>
Table S2. Anti-proliferative activity of the VS hits in endothelial and tumor cell lines.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Endothelial cells IC₅₀ (µM)</th>
<th>Tumor cells IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hit 1, compound 9</td>
<td>13 ± 5</td>
<td>13 ± 1</td>
</tr>
<tr>
<td>Hit 2</td>
<td>≥ 100</td>
<td></td>
</tr>
<tr>
<td>Hit 3</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>Hit 4</td>
<td>≥ 100</td>
<td>> 250</td>
</tr>
<tr>
<td>Hit 5</td>
<td>57 ± 14</td>
<td></td>
</tr>
<tr>
<td>Hit 6</td>
<td>≥ 100</td>
<td>> 250</td>
</tr>
</tbody>
</table>

Sandra, may you complete the table?
Figure S1. Displacement of MTC by hit 9. Fluorescence emission spectra (excitation 374 nm) of MTC (10 µM) in the presence of 10 µM tubulin and in the absence (black line) or presence (red line) of 9 (20 µM).
Figure S2. Dose-response curves of compound 9 in endothelial and tumor cells.
Figure S3. Displacement of R-PT (A) and MTC (B) by 16c. (A) Fluorescence emission spectra (excitation 374 nm) of 0.2 μM R-PT in the presence of 0.2 μM tubulin and in the absence (black line) or presence of 20 μM 16c. (B) Fluorescence emission spectra (excitation 374 nm) of 10 μM MTC in the presence of 10 μM tubulin and in the absence (black line) or presence of 20 μM 16c.