Supporting Information related to the article

Novel vascular disrupting agents with a cyclohexanedione scaffold identified through a ligand-based virtual screening

 approachMaría-Dolores Canela, María-Jesús Pérez-Pérez, Sam Noppen, Gonzalo Sáez-Calvo, J. Fernando Díaz, María-José Camarasa, Sandra Liekens and Eva-María Priego

Includes:
General chemistry procedures S2
General synthetic procedures and analytical andspectroscopic data of hit $\mathbf{9}$ and the described compoundsS2-S19
Table S1. SMILES strings of the VS hits tested S20
Table S2. Anti-proliferative activity of the VS hits in endothelial and tumor cell lines S21
Figure S1: Displacement of MTC (B) by 9 S22
Figure S2. Dose-response curves of compound $\mathbf{9}$ in endothelial
and tumor cells S23
Figure S3: Displacement of R-PT (A) and MTC (B) by 16c S24

Chemistry procedures

Melting points were obtained on a Reichert-Jung Kofler apparatus and are uncorrected. The elemental analysis was performed with a Heraeus CHN-O-RAPID instrument. The elemental compositions of the compounds agreed to within $\pm 0.4 \%$ of the calculated values. For all the tested compounds, satisfactory elemental analysis was obtained supporting $>95 \%$ purity. Electrospray mass spectra were measured on a quadrupole mass spectrometer equipped with an electrospray source (Hewlett-Packard, LC/MS HP 1100). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INNOVA 300 operating at $299 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively, a Varian INNOVA-400 operating at $399 \mathrm{MHZ}\left({ }^{1} \mathrm{H}\right)$ and $99 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively, and a VARIAN SYSTEM-500 operating a $499 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively.

Analytical TLC was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck) precoated plates (0.2 mm). Spots were detected under UV light (254 nm) and/or charring with ninhydrin or phophomolibdic acid. Separations on silica gel were performed by preparative centrifugal circular thin-layer chromatography (CCTLC) on a Chromatotron ${ }^{\mathrm{R}}$ (Kiesegel $60 \mathrm{PF}_{254}$ gipshaltig (Merck)), with layer thickness of 1 and 2 mm and flow rate of 4 or $8 \mathrm{~mL} / \mathrm{min}$, respectively. Flash column chromatography was performed in a Biotage Horizon instrument.

Microwave reactions were performed using the Biotage Initiator 2.0 single-mode cavity instrument from Biotage (Uppsala). Experiments were carried out in sealed microwave process vials utilizing the standard absorbance level (400 W maximum power). The temperature was measured with an IR sensor on the outside of the reaction vessel.

2-(1-((2-hydroxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (9). EM (ES, positive mode): $\mathrm{m} / \mathrm{z} 336(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 500 \mathrm{MHz}\right) \delta: 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-2.64(\mathrm{~m}, 2 \mathrm{H}$, H-4, H-6), 2.80-2.87 (m, 4H, H-4, H-6, CH_{2}), 3.34-3.36 (m, 1H, H-5), $6.90(\mathrm{td}, 1 \mathrm{H} J=7.6,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.01$ (dd, 1 H, J = 8.1, 1.3 Hz, Ar), 7.17-7.28 (m, 3H, Ar), 7.31-7.36 (m, 4H, Ar), 10.15 (br s, 1H, OH), 14.80 (br s, 1H, NH).

General procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines

A microwave vial was charged with 2-acyl-5-phenylcyclohexane-1,3-dione (1.0 mmol), the appropriate aniline (1.5 mmol) and $4 \AA$ molecular sieves in toluene $(2 \mathrm{~mL})$. The reaction vessel was sealed and heated in a
microwave reactor at $150^{\circ} \mathrm{C}$ for 2 h . After cooling, the solvent was evaporated. The resulting residue was purified as specified.

2-(1-((3-Methoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14d).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5 -phenyl-2-propionylcyclohexane-1,3-dione (12) ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and m-anisidine ($27 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield $55 \mathrm{mg}(98 \%)$ of $\mathbf{1 4 d}$ as a white solid. Mp $104-106^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}, 500 MHz) $\delta: 1.06\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.60-$ 2.67 (m, 2H, H-4, H-6), 2.79-2.92 (m, 4H, H-4, H-6, CH2), 3.35 (m, 1H, H-5), 3.79 (s, 3H, OCH ${ }_{3}$), 6.87-6.94 (m, 2H, Ar), 7.01 (dd, 1H, $J=8.3,2.5 \mathrm{~Hz}, \mathrm{Ar}), 7.24$ (ddd, $1 \mathrm{H}, J=8.6,5.1,3.3 \mathrm{~Hz}, \mathrm{Ar}), 7.33-7.35$ (m, 4H, Ar), $7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 14.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 125 \mathrm{MHz}$) $\delta: 12.7\left(\mathrm{CH}_{3}\right), 23.4$ $\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{C}-5), 46.0(\mathrm{C}-4, \mathrm{C}-6), 55.4\left(\mathrm{OCH}_{3}\right), 106.8(\mathrm{NHC}=\mathrm{C}), 111.8,113.9,118.2,126.5,126.7,128.5$, 130.4, 134.0, 143.4, 160.0 (Ar), 177.1 ($\mathrm{NHC=C}$). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$: C, $75.62 ; \mathrm{H}, 6.63$; $\mathrm{N}, 4.01$. Found: C, 75.45; H, 6.49; N, 4.08.

2-(1-((4-Methoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14e).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylcyclohexane-1,3-dione (12) ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) and p-anisidine ($18 \mathrm{mg}, 0.15 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ ethyl acetate, $5: 1$) to yield $30 \mathrm{mg}(86 \%)$ of $\mathbf{1 4 e}$ as a white solid. Mp $122-124^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 1.03\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-$ 2.64 (m, 2H, H-4, H-6), 2.65-2.87 (m, 4H, H-4, H-6, CH ${ }_{2}$), $3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.02-7.07$ (m, 2H, Ar), 7.20-7.29 (m, 3H, Ar), 7.33 (d, 2H, J = $1.1 \mathrm{~Hz}, \operatorname{Ar}$), 7.34 (s, 2H, Ar), 14.80 (br s, 1H, NH) ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 13.0\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}-5), 46.5(\mathrm{C}-4, \mathrm{C}-6), 55.9\left(\mathrm{OCH}_{3}\right), 107.2$ $(\mathrm{NHC}=\mathrm{C}), 115.1,127.0,127.2,127.8,128.8,128.9,143.9,159.1$ (Ar), 178.0 (NHC=C). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right): \mathrm{C}, 75.62 ; \mathrm{H}, 6.63$; N, 4.01. Found: C, 75.37; H, 6.54; N, 3.96.

2-(1-((3,4-Dimethoxyphenyl)amino)propylidene)-5-phenylcyclohexane-1,3-dione (14f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5 -phenyl-2-propionylcyclohexane-1,3-dione (12) ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 3,4-dimethoxyaniline ($30 \mathrm{mg}, 0.24 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in
the Chromatothron (hexane/ethyl acetate, $5: 1$) to yield $20 \mathrm{mg}(33 \%)$ of $\mathbf{1 4 f}$ as a white solid. $\mathrm{Mp} 209-211{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $380(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 500 \mathrm{MHz}\right) \delta: 1.06\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 2.66 (m, 2H, H-4, H-6), 2.78-2.90 (m, 4H, H-4, H-6, CH2), 3.39 (m, 1H, H-5), 3.77 (s, 3H, OCH ${ }_{3}$), 3.79 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.85(\mathrm{dd}, 1 \mathrm{H}, J=8.5,2.4 \mathrm{~Hz}, \mathrm{Ar}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{Ar}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 7.23$ (dd, $1 \mathrm{H}, J=8.7,5.2,3.4 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{Ar}), 7.34(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 14.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 13.2\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}-5), 46.5(\mathrm{C}-4, \mathrm{C}-6), 56.1\left(\mathrm{OCH}_{3}\right), 56.2$ $\left(\mathrm{OCH}_{3}\right), 107.2(\mathrm{NHC}=\mathrm{C}), 110.2,110.6,112.2,118.5,127.0,127.2,128.9,143.9,148.8,149.5(\mathrm{Ar}), 178.0$ ($\mathrm{NHC}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}\right)$: C, $72.80 ; \mathrm{H}, 6.64 ; \mathrm{N}, 3.69$. Found: C, $72.77 ; \mathrm{H}, 6.59 ; \mathrm{N}, 3.76$.

5-Phenyl-2-(1-((3,4,5-trimethoxyphenyl)amino)propylidene)cyclohexane-1,3-dione (14g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionyl-cyclochexane-1,3-dione (12) (40 mg, 0.16 mmol$)$ and 3,4,5-trimethoxyaniline ($44 \mathrm{mg}, 0.24 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, $5: 1$) to yield $20 \mathrm{mg}(30 \%)$ of $\mathbf{1 4 g}$ as a white solid. Mp 160-162 ${ }^{\circ} \mathrm{C} . \mathrm{EM}\left(\mathrm{ES}\right.$, positive mode): m/z $410(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 1.10(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.61-2.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.78-2.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6, \mathrm{CH}_{2}\right), 3.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{ddd}, 1 \mathrm{H}, J=8.3,5.3,3.3 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{Ar})$, 7.34, 7.34 (s, 2H, Ar), 14.90 (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 11.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 38.1$ (C-5), $44.8(\mathrm{C}-4, \mathrm{C}-6), 55.0\left(\mathrm{OCH}_{3}\right), 59.0\left(\mathrm{OCH}_{3}\right), 105.6(\mathrm{NHC}=\mathrm{C}), 102.8,125.4,125.6,127.3,130.3,135.7$, 142.2, 152.1 (Ar), $173.3(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}\right): \mathrm{C}, 70.40 ; \mathrm{H}, 6.65 ; \mathrm{N}, 3.42$. Found: C, 70.70; H, 6.68; N, 3.62.

2-(1-(Benzo[d][1,3]dioxol-5-ylamino)propylidene)-5-phenylcyclohexane-1,3-dione (14h).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylcyclohexane-1,3-dione (12) ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 3,4 -methylenedioxyaniline ($33 \mathrm{mg}, 0.24 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, $5: 1$) to yield $58 \mathrm{mg}(99 \%)$ of $\mathbf{1 4 h}$ as a white solid. Mp $131-133{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $364(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 500 \mathrm{MHz}\right) \delta: 1.03(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-2.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.79-2.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6, \mathrm{CH}_{2}\right), 3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 6.11(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 6.79(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.3,2.1 \mathrm{~Hz}, \mathrm{Ar}), 7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 14.78(\mathrm{br} \mathrm{s}$, 1H, NH). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, 125 \mathrm{MHz}\right) \delta: 12.6\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{C}-5), 46.0(\mathrm{C}-4, \mathrm{C}-6), 101.9$
$\left(\mathrm{CH}_{2}\right), 106.7(\mathrm{NHC}=\mathrm{C}), 107.4,108.4,119.6,126.5,126.7,128.5,129.5,143.4,147.9,149.9$ (Ar), 177.8 $(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$: C, $72.71 ; \mathrm{H}, 5.82 ; \mathrm{N}, 3.85$. Found: $\mathrm{C}, 73.02 ; \mathrm{H}, 6.01 ; \mathrm{N}, 3.96$.

5-Phenyl-2-(1-(phenylamino)propylidene)cyclohexane-1,3-dione (14i).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylcyclohexane-1,3-dione (12) ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and aniline ($22 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ ethyl acetate, 5:1) to yield $41 \mathrm{mg}(80 \%)$ of $\mathbf{1 4 i}$ as a white solid. $\mathrm{Mp} 112-114^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $320(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 500 \mathrm{MHz}\right) \delta: 1.04\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 2.622.66 (m, 2H, H-4, H-6), 2.81-2.88 (m, 4H, H-4, H-6, CH2), 3.34 (m, 1H, H-5), 7.24 (m, 1H, Ar), 7.34 (m, 6H, Ar), $7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 15.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 13.0\left(\mathrm{CH}_{3}\right)$, $23.8\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}-5), 46.5(\mathrm{C}-4, \mathrm{C}-6), 107.3(\mathrm{NHC}=\mathrm{C}), 126.6,127.0,127.20,128.5,128.9,130.1,136.3$, 143.9 (Ar), 177.5 ($\mathrm{NHC=C}$). Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}\right)$: C, $78.97 ; \mathrm{H}, 6.63$; N, 4.391. Found: C, 78.68; H, $6.60 ; \mathrm{N}, 4.21$. Although this compound was mentioned in ref 1 no analitical or spectroscopical data were provided.

5-Phenyl-2-(1-(o-tolylamino)propylidene)cyclohexane-1,3-dione (14j).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 5-phenyl-2-propionylcyclohexane-1,3-dione (12) ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) and o-toluidine ($16 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, 5:1) to yield $25 \mathrm{mg}(75 \%)$ of $\mathbf{1 4} \mathbf{j}$ as a white solid. Mp $132-134{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $334(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{-1} \mathrm{~d}_{6}, 500 \mathrm{MHz}\right) \delta: 0.98\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.18$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.61-2.65 (m, 2H, H-4, H-6), 2.77-2.88 (m, 4H, H-4, H-6, CH Cl_{2}), 3.35 (m, 1H, H-5), 7.24 (m, $1 \mathrm{H}, \mathrm{Ar}), 7.28(\mathrm{dd}, 1 \mathrm{H}, J=7.2,2.1 \mathrm{~Hz}, \mathrm{Ar}), 7.31-7.38(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=7.0,2.1 \mathrm{~Hz}, \mathrm{Ar}), 14.88$ (br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 125 \mathrm{MHz}\right) \delta: 12.7\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}-5), 46.5(\mathrm{C}-4$, C-6), 107.3 ($\mathrm{NHC}=\mathrm{C}$), 127.0, 127.2, 127.3, 127.4, 128.9, 129.0, 131.4, 134.1, 135.0143 .9 (Ar), 178.0 ($\mathrm{NHC}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}\right)$: C, 79.25; H, 6.95; N, 4.20. Found: C, $79.40 ; \mathrm{H}, 6.15 ; \mathrm{N}, 4.01$.

2-(1-((2-Chlorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18a).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione ($\mathbf{1 5 b}$) ($35 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 2chloroaniline ($33 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the

Chromatothron (hexane/ethyl acetate, 5:1) to yield $30 \mathrm{mg}(59 \%)$ of $\mathbf{1 8 a}$ as a white solid. Mp $125-127^{\circ} \mathrm{C}$. EM (E-S, positive mode): m/z $340(\mathrm{M}+\mathrm{H})^{+}$with a Cl isotopic pattern. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.41(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.41-2.67 (m, 2H, H-4, H-6), 2.84-2.88 (m, 2H, H-4, H-6), $3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.49(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 15.07$ (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right)$ $\delta: 20.1\left(\mathrm{CH}_{3}\right), 36.3(\mathrm{C}-5), 46.9(\mathrm{C}-4, \mathrm{C}-6), 109.0(\mathrm{NHC}=\mathrm{C}), 127.0,127.2,128.7,129.0,129.1,129.7,130.0$, 130.6, 134.2, $143.8(\mathrm{Ar}), 173.0(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}_{2}\right)$: C, 70.69; H, 5.34; N, 4.12. Found: C, 70.94; H, 5.34; N, 4.20.

2-(1-((2-Fluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18b).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) (40 mg, 0.17 mmol) and 2fluoroaniline ($25 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, $5: 1$) to yield $45 \mathrm{mg}(78 \%)$ of $\mathbf{1 8 b}$ as a white solid. $\mathrm{Mp} 146-147^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $324(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 500 \mathrm{MHz}\right) \delta: 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61-2.66(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.84-2.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar}), 14.90$ (br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d, $\left.125 \mathrm{MHz}\right) \delta: 19.6$ $\left(\mathrm{CH}_{3}\right), 35.9(\mathrm{C}-5), 45.3(\mathrm{C}-4, \mathrm{C}-6), 108.8(\mathrm{NHC}=\mathrm{C}), 116.4,125.2,126.5,126.7,128.2,128.5,129.8,143.4$, 154.9, 156.9 (Ar), $172.8(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{2}\right)$: $\mathrm{C}, 74.29 ; \mathrm{H}, 5.61 ; \mathrm{N}, 4.33$. Found: C , 73.99; H, 5.34; N, 4.29.

5-Phenyl-2-(1-((2-(trifluoromethyl)phenyl)amino)ethylidene)cyclohexane-1,3-dione (18c).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2trifluoromethylaniline ($33 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by CCTLC in the Chromatothron (hexane/ethyl acetate, $4: 1$) to yield $19 \mathrm{mg}(30 \%)$ of $\mathbf{1 8 c}$ as a white solid. $\mathrm{Mp} 167-169{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $374(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54-2.70$ (m, 2H, H-4, H-6), 2.80-2.95 (m, 2H, H-4, H-6), 3.36 (m, 1H, H-5), 7.24 (m, 1H, Ar), 7.44 (m, 4H, Ar), 7.65 (m, 2H, Ar), $7.82(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,6.9 \mathrm{~Hz}, \mathrm{Ar}), 7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 15.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, $125 \mathrm{MHz}) \delta: 19.9\left(\mathrm{CH}_{3}\right), 36.0(\mathrm{C}-5), 45.0(\mathrm{C}-4, \mathrm{C}-6), 108.6(\mathrm{NHC}=\mathrm{C}), 126.9\left(\mathrm{CF}_{3}\right), 124.3,124.6,124.8$, $126.8,128.5,128.8,129.6,133.0,134.2,143.4$ (Ar), $173.0(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}\right)$: C , 67.55; H, 4.86; N, 3.75. Found: C, 67.63; H, 4.74; N, 3.82.

2-(1-((2,3-Difluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18d).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2,3-difluoroaniline ($26 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield $24 \mathrm{mg}(41 \%)$ of $\mathbf{1 8 d}$ as a white solid. $\mathrm{Mp} 131-133{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $342(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.67(\mathrm{~m}$, 2H, H-4, H-6), 2.85 (m, 2H, H-4, H-6), 3.37 (m, 1H, H-5), 7.24 (d, 1H, J = $4.2 \mathrm{~Hz}, \mathrm{Ar}), 7.34$ (m, 6H, Ar), $7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 35.8(\mathrm{C}-5), 45.4(\mathrm{C}-4$, C-6), $109.0(\mathrm{NHC}=\mathrm{C}), 116.8,117.0,123.7,124.9,126.5,126.7,128.5,143.3,149.1,151.0(\mathrm{Ar}), 172.8$ $(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{2}\right)$: C, $70.37 ; \mathrm{H}, 5.02 ; \mathrm{N}, 4.10$. Found: C, $70.41 ; \mathrm{H}, 5.00 ; \mathrm{N}, 3.98$.

2-(1-((2,6-Difluorophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18e).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2,6-difluoroaniline ($26 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield $20 \mathrm{mg}(37 \%)$ of $\mathbf{1 8 e}$ as a white solid. $\mathrm{Mp} 135-137{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $342(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.63(\mathrm{~m}$, 2H, H-4, H-6), 2.83 (m, 2H, H-4, H-6), 3.38 (m, 1H, H-5), 7.24 (d, 1H, J = $4.2 \mathrm{~Hz}, \mathrm{Ar}), 7.34$ (m, 6H, Ar), $7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 19.4\left(\mathrm{CH}_{3}\right), 35.8(\mathrm{C}-5), 46.4(\mathrm{C}-4$, C-6), 109.1 ($\mathrm{NHC}=\mathrm{C}$), 112.4, 113.8, 124.5, 126.7, 126.9, 128.5, 130.2, 143.3, 156.0, 157.9, (Ar), 173.5 $(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{2}\right)$: $\mathrm{C}, 70.37 ; \mathrm{H}, 5.02 ; \mathrm{N}, 4.10$. Found: C, $70.53 ; \mathrm{H}, 4.99 ; \mathrm{N}, 4.06$.

2-(1-((2,5-Dimethoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenyllcyclohexane-1,3-dione (15b) ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2,5-dimethoxyaniline ($40 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield $30 \mathrm{mg}(48 \%)$ of $\mathbf{1 8 f}$ as a white solid. $\mathrm{Mp} 183-185^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $366(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right) \delta: 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.64(\mathrm{~m}$, 2H, H-4, H-6), 2.72-2.85 (m, 2H, H-4, H-6), 3.39 (m, 1H, H-5), 3.73 (s, 3H, OCH 3), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.95 (m, 2H, Ar), $7.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{Ar}), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 14.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}, 100 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-5), 46.6(\mathrm{C}-4, \mathrm{C}-6), 55.7\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 108.4$
$(\mathrm{NHC}=\mathrm{C}), 112.9,113.1,113.9,125.0,126.5,126.7,128.5,143.5,147.2,153.0$ (Ar), 172.6 (NHC=C). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, $72.31 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.83$. Found: C, $72.20 ; \mathrm{H}, 6.28 ; \mathrm{N}, 3.54$.

2-(1-((2,6-Dimethoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5-phenylcyclohexane-1,3-dione (15b) ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) and 2,6-dimethoxyaniline ($100 \mathrm{mg}, 0.65 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield $36 \mathrm{mg}(23 \%)$ of $\mathbf{1 8 g}$ as a white solid. $\mathrm{Mp} 159-160{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $366(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{-\mathrm{d}}^{6}, 400 \mathrm{MHz}$) $\delta: 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55-2.59(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$), 2.77-2.87 (m, 2H, H-4, H-6), 3.35 (m, 1H, H-5), 3.81 (s, $6 \mathrm{H}, \mathrm{OCH}_{3}$), 6.82 (d, 2H, J = 8.52 Hz , Ar), $7.20-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.38(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 14.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta: 19.4\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-5), 46.6(\mathrm{C}-4, \mathrm{C}-6), 56.0\left(\mathrm{OCH}_{3}\right), 108.1(\mathrm{NHC=C}), 104.6$, 112.8, 126.5, 126.7, 128.5, 129.6, 143.6, 154.5 (Ar), 174.0 ($\mathrm{NHC=C}$), 196.9 (CO). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, $72.31 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.83$. Found: C, $72.60 ; \mathrm{H}, 6.61 ; \mathrm{N}, 3.92$.

(E)-4-Cyclohexylbut-3-en-2-one (20a).

To a solution of cyclohexanecarbaldehyde (19a) ($1.21 \mathrm{~mL}, 10 \mathrm{mmol}$) in a mixture of acetone/water ($4 \mathrm{~mL} / 5$ mL), 1% aqueous solution of sodium hydroxide (5 mL) was rapidly added, and the reaction mixture was stirred at room temperature overnight. The crude reaction mixture was then neutralized by the addition of 1 M HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and washed with brine (20 mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The residue was purified by flash column chromatography (hexane/ethyl acetate) to yield 984 mg (65\%) of 20a as an oil. EM (ES, positive mode): m / z $153(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right)$ 8: 1.11-1.27 (m, 5H, H-2', H-3' H-4', H-5', H-6'), 1.69-1.70 (m, 5H, H-2', H-3' H-4', H-5', H-6'), 2.12 (m, 1H, H-1'), 2.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 5.96 (d, 1H, J = $16.1 \mathrm{~Hz}, \mathrm{H}-3$), 6.78 (dd, 1H, $J=16.1,6.7 \mathrm{~Hz}, \mathrm{H}-4)$.

[1,1'-Bi(cyclohexane)]-3,5-dione (21a).

To a solution of 25% sodium ethoxide in ethanol ($15 \mathrm{~mL}, 6.86 \mathrm{mmol}$), diethyl malonate ($652 \mu \mathrm{~L}, 6.86$ mmol) was added dropwise, keeping the temperature below $25^{\circ} \mathrm{C}$. The mixture was further diluted with ethanol (1.2 mL) and heated at $60^{\circ} \mathrm{C}$. Then, 20a ($950 \mathrm{mg}, 6.24 \mathrm{mmol}$) in ethanol (2.2 mL) was added dropwise and the mixture was stirred at reflux and monitored by LC-MS until the corresponding starting material was consumed. The reaction mixture was treated with 6 M sodium hydroxide (2.2 mmol) and heated
at $80^{\circ} \mathrm{C}$ for 2 h . After cooling, ethanol was removed in vacuo and the resulting solution was washed with toluene (2 x 10 mL). The aqueous layer was treated with $37 \% \mathrm{HCl}$ until pH 2 , refluxed for 1 h and left to cool at room temperature. The solid thus formed was isolated by filtration to yield $840 \mathrm{mg}(69 \%)$ of 21a as a brown solid. Mp $144-146{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $195(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): 0.94-1.2 (m, 6H, H-1', H-2', H-3', H-4', H-5', H-6'), 1.62-1.77 (m, 6H, , H-2', H-3', H-4', H-5', H-6', H-5), 2.02-2.25 (m, 4H, H-4, H-6), 5.18 (s, 1H, H-2), 11.17 (br s, 1H, OH).

5-Benzylcyclohexane-1,3-dione (21b).

Following the described procedure for the synthesis of 21a, a mixture of diethyl malonate $(0.65 \mathrm{~mL}, 6.86$ $\mathrm{mmol}), 25 \%$ sodium ethoxide in ethanol $(15 \mathrm{~mL}, 6.86 \mathrm{mmol})$ and (E)-5-phenylpent-3-en-2-one (20b) $)^{2}(1.0 \mathrm{~g}$, $6.25 \mathrm{mmol})$ in ethanol $(2.2 \mathrm{~mL})$ was stirred at reflux for 2 h before treatment with $6 \mathrm{M} \mathrm{NaOH}(5 \mathrm{~mL}, 22$ $\mathrm{mmol})$ to yield $420 \mathrm{mg}(33 \%)$ of 21b as a brown oil. EM (ES, positive mode): m/z $203(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{-1}, 300 \mathrm{MHz}\right) \delta$ (enol form): 2.03-2.16(m, 4H, H-4, H-6), $2.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.17-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 11.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$.

4-Acetyl-[1,1'-bi(cyclohexane)]-3,5-dione (22a).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 21a (300 $\mathrm{mg}, 1.54 \mathrm{mmol})$, acetylchloride ($238 \mu \mathrm{~L}, 3.09 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(469 \mathrm{mg}, 3.39 \mathrm{mmol})$, 1,2,4-triazole (43 mg, 0.62 mmol) and tetrabutyl ammonium bromide ($248 \mathrm{mg}, 0.77 \mathrm{mmol}$) in anhydrous DMF (4 mL) to yield $134 \mathrm{mg}(36 \%)$ of 22a as a yellow solid. Mp 52-54 ${ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $237 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}-$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta(\mathrm{enol}$ form): 1.12 (m, 6H, H-1', H-2', H-3', H-4', H-5', H-6'), 1.70 (m, 5H, H2^{\prime}, H-3', H-4', H-5', H-6'), 1.87 (m, 1H, H-5), 2.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.50-2.64 (m, 4H, H-4, H-6).

2-Acetyl-5-benzylcyclohexane-1,3-dione (22b).

Following the described procedure for the synthesis of 12, a microwave vial was charged with $\mathbf{2 1 b}$ (100 $\mathrm{mg}, 0.49 \mathrm{mmol})$, acetylchloride $(75 \mu \mathrm{~L}, 0.98 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.08 \mathrm{mmol}), 1,2,4$-triazole ($14 \mathrm{mg}, 0.20 \mathrm{mmol}$) and tetrabutyl ammonium bromide ($79 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous DMF (4 mL) to yield $46 \mathrm{mg}(38 \%)$ of $\mathbf{2 2 b}$ as a yellow oil. EM (ES , positive mode): $245 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right.$, $300 \mathrm{MHz}) \delta$ (enol form): 2.17-2.43 (m, 5H, H-4, H-6, H-5), $2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.51(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=6.7,1.7 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6), 7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$.

4-(1-((2-Methoxyphenyl)amino)ethylidene)-[1,1'-bi(cyclohexane)]-3,5-dione (23a).

A solution of 22a ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) and o-anisidine $(72 \mu \mathrm{~L}, 0.63 \mathrm{mmol})$ in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield 128 mg (89%) of 23a as a white solid. $\mathrm{Mp} 131-133{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $342(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 0.93-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right.$, H-3', H-4', H-5', Н-6'), 1.60-1.77 (m, 6H, H-5, H-2', H-3', H-4', H-5', H-6'), 2.30 (m, 2H, H-4, H-6), 2.36 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}, \mathrm{Ar}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}), 14.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$,
 C-6), $55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C}), 112.3,120.6,124.5,126.9,129.1,153.1(\mathrm{Ar}), 172.1(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}\right)$: C, 73.87 ; H, 7.97; N, 4.10. Found: C, $74.05 ; \mathrm{H}, 8.15 ; \mathrm{N}, 4.09$.

5-Benzyl-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (23b).

A solution of 22b ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and o-anisidine ($38 \mu \mathrm{~L} \mathrm{mg}, 0.25 \mathrm{mmol}$) in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $41 \mathrm{mg}(73 \%)$ of $\mathbf{2 3 b}$ as a white solid. $\mathrm{Mp} 165-167{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.33$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.60\left(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $7.02(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.72$ (br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, 100 \mathrm{MHz}\right) \delta: 19.6\left(\mathrm{CH}_{3}\right), 32.6(\mathrm{C}-5), 39.7$ $\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{C}-4, \mathrm{C}-6), 55.7\left(\mathrm{OCH}_{3}\right), 108.6(\mathrm{NHC}=\mathrm{C}), 112.3,115.2,117.9,120.6,124.5,126.1,126.9,129.0$, 129.2, 139.4 (Ar), $172.3(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right): \mathrm{C}, 75.62 ; \mathrm{H}, 6.63$; $\mathrm{N}, 4.01$. Found: C, 75.86; H, 6.71; N, 4.08.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5,5-dimethylcyclohexane-1,3-dione (23c).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (22c) ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$) and o-anisidine $(93 \mu \mathrm{~L}, 0.82 \mathrm{mmol})$ in toluene to yield $134 \mathrm{mg}(79 \%)$ of 23 c as a white solid. $\mathrm{Mp} 101-103{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $288(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 500 \mathrm{MHz}\right) \delta: 0.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36(\mathrm{~m}$, $\left.7 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.01(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~m}$,

2H, Ar), 14.73 (br s, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 125 \mathrm{MHz}\right) \delta: 20.0\left(\mathrm{CH}_{3}\right)$, $28.2\left(\mathrm{CH}_{3}\right), 30.2(\mathrm{C}-5), 52.7$ (C-4, C-6), $56.2\left(\mathrm{OCH}_{3}\right), 108.3(\mathrm{NHC}=\mathrm{C}), 112.7,121.1,124.6,127.3,129.7,153.4(\mathrm{Ar}), 172.2(\mathrm{NHC=C})$. Anal. calc. for $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}\right): \mathrm{C}, 71.06 ; \mathrm{H}, 7.37 ; \mathrm{N}, 4.87$. Found: C, 71.24; H, 7.61; N, 4.94.

5-(3-Methoxyphenyl)cyclohexane-1,3-dione (24f)

Following the procedure describe for the synthesis of 20a, reaction of 3-methoxybenzaldehyde ($0.97 \mathrm{~mL}, 8$ mmol) and $\mathrm{NaOH}(4 \mathrm{~mL})$ in acetone $/$ water ($3.2 \mathrm{~mL} / 4 \mathrm{~mL}$) afforded a residue that was purified by flash column chromatography (hexane/ethyl acetate $2: 1$) to yield $1.33 \mathrm{~g}(83 \%)$ of (E)-4-(3-methoxyphenyl)but-3-en-2-one as a yellow oil. EM (ES, positive mode): m/z $177(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) $\delta: 2.33$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}, \mathrm{H}-3), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}$, Ar), $7.59(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{H}-4)$. Then, following the described procedure for the synthesis of 21a, a mixture of diethyl malonate ($0.65 \mathrm{~mL}, 6.87 \mathrm{mmol}$), 25% sodium ethoxide in ethanol $(1.5 \mathrm{~mL}, 8.87 \mathrm{mmol})$ and (E)-4-(3-methoxyphenyl)but-3-en-2-one ($1.10 \mathrm{~g}, 6.24 \mathrm{mmol}$) in ethanol $(2 \mathrm{~mL})$ was stirred at reflux for 2 h before treatment with $6 \mathrm{M} \mathrm{NaOH}(5 \mathrm{~mL}, 22 \mathrm{mmol})$ to yield $1.24 \mathrm{~g}(91 \%)$ of $\mathbf{2 4 f}$ as a pale brown solid. $\mathrm{Mp} 85-$ $87^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $219(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): $2.29(\mathrm{~m}$, 2H, H-4, H-6), 2.54-2.73 (m, 2H, H-4, H-6), 3.25 (m, 1H, H-5), 3.74 (s, 3H, OCH ${ }_{3}$), 5.28 (s, 1H, H-2), 6.786.92 (m, 3H, Ar), 7.21-7.26 (m, 1H, Ar), 11.17 (br s, 1H, OH).

2-Acetyl-5-(o-tolyl)cyclohexane-1,3-dione (25a).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(o-tolyl)cyclohexane-1,3-dione (24a) $)^{3}(100 \mathrm{mg}, 0.49 \mathrm{mmol})$, acetylchloride ($75 \mu \mathrm{~L}, 0.98 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.08 \mathrm{mmol}), 1,2,4$-triazole ($14 \mathrm{mg}, 0.20 \mathrm{mmol}$) and tetrabutyl ammonium bromide (79 mg , $0.25 \mathrm{mmol})$ in anhydrous acetonitrile (4 mL) to yield $38 \mathrm{mg}(35 \%)$ of 25 a as a yellow solid. $\mathrm{Mp} 165-167^{\circ} \mathrm{C}$. EM (ES, positive mode): $245 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{-} \mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.56 (s, 3H, CH3), 2.63 (m, 2H, H-4, H-6), 2.93 (m, 2H, H-4, H-6), 3.60 (m, 1H, H-5), 7.11-7.33 (m, 4H, Ar).

2-Acetyl-5-(2-fluorophenyl)cyclohexane-1,3-dione (25b).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(2-fluorophenyl)cyclohexane-1,3-dione ($\mathbf{2 4 b})^{3}(100 \mathrm{mg}, 0.49 \mathrm{mmol})$, acetylchloride ($75 \mu \mathrm{~L}, 0.98 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.08 \mathrm{mmol})$, 1,2,4-triazole ($14 \mathrm{mg}, 0.20 \mathrm{mmol}$) and tetrabutyl ammonium bromide
($79 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous acetonitrile (4 mL) to yield $59 \mathrm{mg}(48 \%)$ of $\mathbf{2 5 b}$ as a yellow solid. $\mathrm{Mp} 71-$ $73^{\circ} \mathrm{C}$. EM (ES, positive mode): $249 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{-} \mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): 2.55 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 2.66-2.73 (m, 2H, H-4, H-6), 2.92-3.08 (m, 2H, H-4, H-6), 3.68 (m, 1H, H-5), 7.16-7.44 (m, 4H, Ar).

2-Acetyl-5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (25c).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (24c) ${ }^{3}$ ($400 \mathrm{mg}, 1.85 \mathrm{mmol}$), acetylchloride ($0.28 \mathrm{~mL}, 3.70 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(563 \mathrm{mg}, 4.07 \mathrm{mmol}$), 1,2,4-triazole ($51 \mathrm{mg}, 0.74 \mathrm{mmol}$) and tetrabutyl ammonium bromide ($298 \mathrm{mg}, 0.93 \mathrm{mmol}$) in anhydrous acetonitrile (5 mL) to yield $139 \mathrm{mg}(29 \%)$ of $\mathbf{2 5 c}$ as a white solid. Mp $140-142{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $259 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): 2.37 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.62-2.71 (m, 2H, H-4, H-6), 3.25 (m, 2H, H-4, H-6), $3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 6.98-7.02 (m, 3H, Ar).

2-Acetyl-5-(2,6-difluorophenyl)cyclohexane-1,3-dione (25d).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(2,6-dimethylphenyl)cyclohexane-1,3-dione (24d) ${ }^{3}$ ($400 \mathrm{mg}, 1.78 \mathrm{mmol}$), acetylchloride ($0.26 \mathrm{~mL}, 3.57 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($543 \mathrm{mg}, 3.93 \mathrm{mmol}$), 1,2,4-triazole ($49 \mathrm{mg}, 0.71 \mathrm{mmol}$) and tetrabutyl ammonium bromide $(287 \mathrm{mg}, 0.89 \mathrm{mmol})$ in anhydrous acetonitrile (5 mL) to yield $66 \mathrm{mg}(14 \%)$ of $\mathbf{2 5 d}$ as a white solid. Mp 88 $90^{\circ} \mathrm{C}$. EM (ES, positive mode): $267 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): 2.54 (s, 3 H , CH_{3}), 2.66 (m, 2H, H-4, H-6), 3.04 (m, 2H, H-4, H-6), 3.78 (m, 1H, H-5), 7.08-7.41 (m, 3H, Ar).

2-Acetyl-5-(m-tolyl)cyclohexane-1,3-dione (25e)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(m-tolyl)cyclohexane-1,3-dione (24e) ${ }^{3}$ ($200 \mathrm{mg}, 1.00 \mathrm{mmol}$), acetylchloride ($0.15 \mathrm{~mL}, 2.00 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($304 \mathrm{mg}, 2.20 \mathrm{mmol}$), 1,2,4-triazole ($28 \mathrm{mg}, 0.40 \mathrm{mmol}$) and tetrabutyl ammonium bromide (161 mg , $0.50 \mathrm{mmol})$ in anhydrous acetonitrile $(4 \mathrm{~mL})$ to yield $110 \mathrm{mg}(45 \%)$ of $\mathbf{2 5 e}$ as a white solid. $\mathrm{Mp} 68-70^{\circ} \mathrm{C}$. EM (ES, positive mode): $245 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.62-2.69 (m, 2H, H-4, H-6), 2.91 (m, 2H, H-4, H-6), $3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.05-7.25(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$.

2-Acetyl-5-(3-methoxyphenyl)cyclohexane-1,3-dione (25f)

Following the described procedure for the synthesis of $\mathbf{1 2}$, a microwave vial was charged with $\mathbf{2 4 f}$ (200 mg , $0.98 \mathrm{mmol})$, acetylchloride ($0.14 \mathrm{~mL}, 1.84 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$, 1, 2,4-triazole (24 $\mathrm{mg}, 0.36 \mathrm{mmol})$ and tetrabutyl ammonium bromide ($148 \mathrm{mg}, 0.46 \mathrm{mmol}$) in anhydrous acetonitrile (4 mL) to yield $60 \mathrm{mg}(50 \%)$ of 25 f as a white solid. Mp $110-112{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $261 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta\left(\mathrm{enol}\right.$ form): $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ $6), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80-6.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.22-7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$.

2-Acetyl-5-(p-tolyl)cyclohexane-1,3-dione (25g)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(p-tolyl)cyclohexane-1,3-dione $(\mathbf{2 4 g})^{4}(200 \mathrm{mg}, 1.00 \mathrm{mmol})$, acetylchloride ($0.15 \mathrm{~mL}, 2.00 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(304 \mathrm{mg}, 2.20 \mathrm{mmol}), 1,2,4$-triazole $(28 \mathrm{mg}, 0.40 \mathrm{mmol})$ and tetrabutylammonium bromide (161 mg, $0.50 \mathrm{mmol})$ in anhydrous acetonitrile $(4 \mathrm{~mL})$ to yield $217 \mathrm{mg}(45 \%)$ of $\mathbf{2 5 g}$ as a white solid. $\mathrm{Mp} 98-100{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $245 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64-2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.21 (m, 2H, Ar).

2-Acetyl-5-(4-methoxyphenyl)cyclohexane-1,3-dione (25h).

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-methoxyphenyl)cyclohexane-1,3-dione (24h $)^{4}(300 \mathrm{mg}, 1.38 \mathrm{mmol})$, acetyl chloride ($0.21 \mathrm{~mL}, 2.76 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3.00 \mathrm{mmol}), 1,2,4$-triazole ($36 \mathrm{mg}, 0.54 \mathrm{mmol}$) and tetrabutylammonium bromide $(222 \mathrm{mg}, 0.69 \mathrm{mmol})$ in anhydrous acetonitrile $(5.5 \mathrm{~mL})$ to yield $180 \mathrm{mg}(50 \%)$ of $\mathbf{2 5 h}$ as a white solid. Mp $85-87{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $261 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): 2.53 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.72\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{OCH}_{3}\right), 6.88$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar})$.

2-Acetyl-5-(4-chlorophenyl)cyclohexane-1,3-dione (25i)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-chlorophenyl)cyclohexane-1,3-dione (24i) ($200 \mathrm{mg}, 0.90 \mathrm{mmol}$), acetylchloride ($0.14 \mathrm{~mL}, 1.80 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(274 \mathrm{mg}, 1.98 \mathrm{mmol})$, 1,2,4-triazole ($25 \mathrm{mg}, 0.36 \mathrm{mmol}$) and tetrabutyl ammonium bromide ($145 \mathrm{mg}, 0.45 \mathrm{mmol}$) in anhydrous acetonitrile $(4 \mathrm{~mL})$ to yield $352 \mathrm{mg}(74 \%)$ of $\mathbf{2 5 i}$ as a white solid. Mp 140$142{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $265 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$with a Cl isotopic pattern. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right)$
δ (enol form): $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.35-$ 7.42 (m, 4H, Ar).

2-Acetyl-5-(4-fluorophenyl)cyclohexane-1,3-dione (25j)

Following the described procedure for the synthesis of 12, a microwave vial was charged with 5-(4-fluorophenyl)cyclohexane-1,3-dione ($\mathbf{2 4 j}$) ($100 \mathrm{mg}, 0.48 \mathrm{mmol}$), acetylchloride ($71 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.06 \mathrm{mmol}), 1,2,4$-triazole $(13 \mathrm{mg}, 0.19 \mathrm{mmol})$ and tetrabutyl ammonium bromide ($77 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous acetonitrile $(4 \mathrm{~mL})$ to yield $71 \mathrm{mg}(60 \%)$ of $\mathbf{2 5 j}$ as a white solid. Mp 110$112^{\circ} \mathrm{C}$. EM (ES, positive mode): $249 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta$ (enol form): $2.55(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.71 (m, 2H H-4, H-6), 2.95 (m, 2H, H-4, H-6), 3.40 (m, 1H, H-5), 7.23-7.35 (m, 4H, Ar).

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(o-tolyl)cyclohexane-1,3-dione (26a).

A solution of $\mathbf{2 5 a}(90 \mathrm{mg}, 0.37 \mathrm{mmol})$ and o-anisidine $(63 \mu \mathrm{~L}, 0.55 \mathrm{mmol})$ in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $60 \mathrm{mg}(46 \%)$ of 26a as a white solid. $\mathrm{Mp} 142-144{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}$ $=7.7,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.17(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, \mathrm{Ar}), 14.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 100 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 32.1(\mathrm{C}-5), 45.1(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right)$, $108.3(\mathrm{NHC}=\mathrm{C}), 112.3,120.6,124.5,125.2,126.2,126.3,126.9,129.2,130.3,135.2,141.4,153.1$ (Ar), $174.0(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right): \mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.01$. Found: C, $75.78 ; \mathrm{H}, 6.73 ; \mathrm{N}, 3.84$.

5-(2-Fluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26b).

A solution of $\mathbf{2 5 b}(80 \mathrm{mg}, 0.32 \mathrm{mmol})$ and o-anisidine $(55 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $80 \mathrm{mg}(71 \%)$ of $\mathbf{2 6 b}$ as a white solid. $\mathrm{Mp} 133-135{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $354(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60-2.63(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}$, Ar), 7.20 (m, 3H, Ar), 7.32 (m, 2H, Ar), 7.39 (dd, 1H, $J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar})$, 14.75 (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, 100 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 29.6(\mathrm{C}-5), 45.0(\mathrm{C}-4, \mathrm{C}-6), 56.1$
$\left(\mathrm{OCH}_{3}\right), 108.1(\mathrm{NHC}=\mathrm{C}), 108.3,112.3,115.3,120.6,124.4,126.9,127.8,128.4,129.3,129.9,153.1,161.4$ (Ar), 172.7 ($\mathrm{NHC}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FNO}_{3}\right)$: $\mathrm{C}, 71.37 ; \mathrm{H}, 5.70 ; \mathrm{N}, 3.96$. Found: C, 71.09; $\mathrm{H}, 5.98 ; \mathrm{N}$, 4.02 .

5-(2,6-Dimethylphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26c).

A solution of $25 \mathrm{c}(130 \mathrm{mg}, 0.50 \mathrm{mmol})$ and o-anisidine $(85 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $120 \mathrm{mg}(66 \%)$ of $\mathbf{2 6 c}$ as a pale brown solid. Mp 140-142 ${ }^{\circ} \mathrm{C}$. EM (ES, positive mode): $\mathrm{m} / \mathrm{z} 364(\mathrm{M}+\mathrm{H}){ }^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO $\left.^{2} \mathrm{~d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.59 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$), 3.17 (m, 2H, H-4, H-6), 3.77 (m, 1H, H-5), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $6.99(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.39(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 14.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta: 19.8\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 32.6(\mathrm{C}-5), 42.7$ $(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.3(\mathrm{NHC}=\mathrm{C}), 112.3,120.6,124.5,126.2,126.9,129.2,129.7,136.1,138.1$, 153.1 (Ar), 172.7 ($\mathrm{NHC}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, 76.01 ; H, 6.93; N, 3.85. Found: C, 76.30; H, 7.05; N, 3.79.

5-(2,6-Difluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26d).

A solution of $25 \mathbf{d}(55 \mathrm{mg}, 0.21 \mathrm{mmol})$ and o-anisidine ($36 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $44 \mathrm{mg}(56 \%)$ of $\mathbf{2 6 d}$ as a white solid. Mp 141-142 ${ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $372(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right)$ 8: $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55-2.60(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$), 2.96-3.03 (m, 2H, H-4, H-6), 3.71 (m, 1H, H-5), 3.84 (s, 3H, OCH $)_{3}$), 7.04 (m, 1H, J = 7.6, 1.2 $\mathrm{Hz}, \mathrm{Ar}), 7.10$ (t, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 7.20$ (dd, $1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.32$ (dd, $1 \mathrm{H}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}$), $7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}){ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta: 19.8\left(\mathrm{CH}_{3}\right), 27.0$ (C-5), $43.0(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.2(\mathrm{NHC}=\mathrm{C}), 112.0,112.3,117.5,120.6,124.4,126.9,129.27$, 153.1, 159.6, 162.1 (Ar), 172.9 ($\mathrm{NHC=C}$). Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3}\right): \mathrm{C}, 67.92 ; \mathrm{H}, 5.16 ; \mathrm{N}, 3.77$. Found: C, 67.85; H, 4.98; N, 3.67.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(m-tolyl)cyclohexane-1,3-dione (26e).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $\mathbf{2 5 e}(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ and o-anisidine ($42 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 54 mg (75\%) of 26e as a white solid. Mp $107-109{ }^{\circ} \mathrm{C} . \mathrm{EM}\left(\mathrm{ES}\right.$, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.75-2.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ 6), $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{dd}$, $1 \mathrm{H}, J=7.7,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta: 19.5$ $\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 35.9(\mathrm{C}-5), 46.2(\mathrm{C}-4, \mathrm{C}-6), 55.6\left(\mathrm{OCH}_{3}\right), 108.2(\mathrm{NHC}=\mathrm{C}), 112.1,120.4,123.6,124.3$, 126.7, 127.0, 127.2, 128.2, 129.0, 137.4, 143.3, 152.9 (Ar), $172.3(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$: C, 75.62; H, 6.63; N, 4.01. Found: C, 75.66; H, 6.90; N, 4.02.

5-(3-Methoxyphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26f).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $\mathbf{2 5 f}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$ and o-anisidine ($39 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 44 mg (52\%) of $26 f$ as a white solid. Mp $127-129{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $366(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500$ $\mathrm{MHz}) \delta: 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56-2.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.75(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.20(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4$, 1.2 Hz, Ar), $7.24(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.38(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.7 \mathrm{~Hz}, \mathrm{Ar})$, 14.77 (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{-1}, 125 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-5), 45.4,46.3(\mathrm{C}-4, \mathrm{C}-6), 54.9$ $\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C}), 111.8,112.3,112.68,118.9,120.6,124.5,126.9,129.2,129.5,145.2$, 153.0, 159.4 (Ar), $172.4(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, $72.31 ; \mathrm{H}, 6.31$; $\mathrm{N}, 3.94$. Found: C, 72.43; H, 6.31; N, 3.84.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(p-tolyl)cyclohexane-1,3-dione (26g).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $\mathbf{2 5 g}(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ and o-anisidine ($35 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 41 mg (59%) of $\mathbf{2 6 g}$ as a white solid. Mp $172-174{ }^{\circ} \mathrm{C} . \mathrm{EM}\left(\mathrm{ES}\right.$, positive mode): $\mathrm{m} / \mathrm{z} 350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6)$, $3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.05(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=7.9,1.2 \mathrm{~Hz}, \mathrm{Ar})$,
$7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.7,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}, 100 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 35.7(\mathrm{C}-5), 46.2(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C})$, $112.3,120.6,124.5,126.6,126.9,129.0,129.2,135.5,140.5,153.1$ (Ar), 172.4 (NHC=C). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right): \mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.01$. Found: C, $75.59 ; \mathrm{H}, 6.39 ; \mathrm{N}, 3.82$.

5-(4-Methoxyphenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26h).
Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $\mathbf{2 5 h}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$ and o-anisidine ($39 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 33 mg (39\%) of 26h as a white solid. Mp 140-142 ${ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $366(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.04(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.3, 1.2 Hz, Ar), 7.24 (m, 2H, Ar), 7.31 (dd, $1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 35.3(\mathrm{C}-5), 46.3(\mathrm{C}-4, \mathrm{C}-6), 55.0\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 108.5$ $(\mathrm{NHC}=\mathrm{C}), 112.3,113.9,120.6,124.5,126.9,127.7,129.2,135.5,153.1,157.9(\mathrm{Ar}), 172.4(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, 72.31 ; H, 6.34; N, 3.83. Found: C, $72.38 ; \mathrm{H}, 6.29 ; \mathrm{N}, 4.01$.

5-(4-Chlorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26i).

Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $25 i(60 \mathrm{mg}, 0.20 \mathrm{mmol})$ and o-anisidine ($38 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$) in toluene. The residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 70 mg (82%) of 26i as a white solid. Mp $138-140{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $370(\mathrm{M}+\mathrm{H})^{+}$with a Cl isotopic pattern. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta: 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.81(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-4, \mathrm{H}-6)$, $3.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.3 \mathrm{~Hz}, \mathrm{Ar})$, $7.32(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 14.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta:$ $19.7\left(\mathrm{CH}_{3}\right), 35.5(\mathrm{C}-5), 45.6(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C}), 112.3,120.1,124.5,126.9,128.4$, 128.7, 129.2, 131.0, 142.5, 153.1 (Ar), $172.5(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{3}\right): \mathrm{C}, 68.20 ; \mathrm{H}, 5.45 ; \mathrm{N}$, 3.79. Found: C, 68.31; H, 5.64; N, 3.88.

5-(4-Fluorophenyl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (26j).
Following the general procedure for the reaction of 2-acyl-5-phenylcyclohexane-1,3-diones with anilines, a microwave vial was charged with $\mathbf{2 5 j}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ and o-anisidine $(28 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ in toluene. The
residue was worked up and purified by flash chromatography (hexane/ethyl acetate) to yield 60 mg (99%) of 26j as a white solid. Mp $126-128^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $354(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 500$ $\mathrm{MHz}) \delta: 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56-2.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.72-2.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~m}, 1 \mathrm{H}, J=7.6,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.3 \mathrm{~Hz}, \mathrm{Ar})$, $7.31(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 14.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta:$ $19.7\left(\mathrm{CH}_{3}\right), 35.4(\mathrm{C}-5), 45.6,46.3(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C}), 112.3,115.2,120.6,124.5$, $126.9,128.6,129.2,139.7,139.7,153.1,159.9,161.8(\mathrm{Ar}), 172.5(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FNO}_{3}\right): \mathrm{C}$, 71.37; H, 5.70; N, 3.96. Found: C, 71.62; H, 5.84; N, 4.05.

5-(3-Methoxyphenyl)-2-(1-(o-tolylamino)ethylidene)cyclohexane-1,3-dione (26k).
A solution of $\mathbf{2 5 k}(250 \mathrm{mg}, 0.96 \mathrm{mmol})$ and o-tolylaniline $(154 \mu \mathrm{~L}, 1.44 \mathrm{mmol})$ in toluene was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate) to yield $148 \mathrm{mg}(42 \%)$ of $\mathbf{2 6 k}$ as a white solid. $\mathrm{Mp} 105-107{ }^{\circ} \mathrm{C}$. EM (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}\right.$, 300 MHz$) \delta: 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.58-2.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.79-2.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.79-6.82 (m, 1H, Ar), 6.91 (m, 2H, Ar), 7.22-7.35 (m, 4H, Ar), $7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right) \delta: 17.4\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right), 36.2(\mathrm{C}-5), 45.7(\mathrm{C}-4, \mathrm{C}-6), 55.0\left(\mathrm{OCH}_{3}\right), 108.2$ $(\mathrm{NHC}=\mathrm{C}), 111.8,112.687,118.9,126.5,126.9,128.1,129.5,131.0,133.3,135.1,145.1,159.4(\mathrm{Ar}), 172.6$ $(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$: $\mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.01$. Found: $\mathrm{C}, 75.44 ; \mathrm{H}, 6.51 ; \mathrm{N}, 3.98$.

5-(3-Hydroxyphenyl)-2-(1-(o-tolylamino)ethylidene)cyclohexane-1,3-dione (261).

To a cooled solution of $\mathbf{2 6 k}(150 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{BBr}_{3}(800 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ was added and the mixture was stirred overnight at room temperature. The precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash chromatography (hexane/ethyl acetate) to yield $34 \mathrm{mg}(23 \%)$ of $\mathbf{2 6 1}$ as a yellow oil. EM (ES, positive mode): m/z $336(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$, 400 MHz$) \delta: 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$), 2.77 (m, 2H, H-4, H-6), 3.25 (m, 1H, H-5), 6.62 (ddd, $1 \mathrm{H}, \mathrm{J}=8.0,2.4,0.9 \mathrm{~Hz}, \mathrm{Ar}$), $6.70(\mathrm{t}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{Ar}), 6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 9.35$ (br s, 1H, OH), 14.91 (br s, 1H, NH).$^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta: 17.5\left(\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3}\right), 36.0(\mathrm{C}-5), 45.8(\mathrm{C}-4, \mathrm{C}-6), 108.2(\mathrm{NHC}=\mathrm{C}) 113.4,113.6,117.3,126.6,126.9,128.1,129.4$,
131.0, 133.3, 135.2, 145.0, $157.4(\mathrm{Ar}), 172.6(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}\right): \mathrm{C}, 75.20 ; \mathrm{H}, 6.31$; N , 4.18. Found: C, 74.98; H, 6.33; N, 4.05 .

References

1. Baranowicz, J.; Kirkor, W. 1,3-Cycloalkanediones and their derivatives II. 2-Acyl derivatives of 1,3cyclohexanediones. Lodz. Towarz. Nauk. Wydzial II. Acta Chim. 1964, 9, 63-70.
2. Donkor, I. O.; Li, H.; Queener, S. F. Synthesis and DHFR inhibitory activity of a series of 6-substituted-2,4-diaminothieno 2,3-d pyrimidines. Eur. J. Med. Chem. 2003, 38, 605-611.
3. Zhang, W.; Benmohamed, R.; Arvanites, A. C.; Morimoto, R. I.; Ferrante, R. J.; Kirsch, D. R.; Silverman, R. B. Cyclohexane 1,3-diones and their inhibition of mutant SOD1-dependent protein aggregation and toxicity in PC12 cells. Biorg. Med. Chem. 2012, 20, 1029-1045.
4. Tamura, Y.; Yoshimoto, Y.; Kunimoto, K.; Tada, S.; Tomita, T.; Wada, T.; Seto, E.; Murayama, M.; Shibata, Y.; Nomura, A.; Ohata, K. Nonsteroidal antiinflamatory agents. 1. 5-Alkoxy-3-biphenylylacetic acids and related compounds as new potential antiinflamatory agents. J. Med. Chem. 1977, 20, 709-714.

Table S1. SMILES strings from the VS hits tested.

Compound

 SMILES stringHit 1, compound $9 \mathrm{O}=\mathrm{C}(\mathrm{CC}(\mathrm{C} 1=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 1) \mathrm{CC} / 2=\mathrm{O}) \mathrm{C} 2=\mathrm{C}(\mathrm{NC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \mathrm{O}) \backslash \mathrm{CC}$
Hit $2 \quad \mathrm{O}=\mathrm{C}(\mathrm{C} 1=\mathrm{C}(\mathrm{N} 2) \mathrm{C} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3 \mathrm{~S} 1) \mathrm{N}(\mathrm{CCN} 4 \mathrm{CCOCC} 4) \mathrm{C} 2=\mathrm{S}$
Hit $3 \quad \mathrm{CC} 1=\mathrm{CC}(\mathrm{N} / \mathrm{C}(\mathrm{C})=\mathrm{C} 2 \mathrm{C}(\mathrm{C}(\mathrm{C}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{C} 3 \mathrm{C} \mid 2=\mathrm{O})=\mathrm{O})=\mathrm{NO} 1$
Hit $4 \quad \mathrm{O}=\mathrm{C}(\mathrm{NC} 1=\mathrm{CC}=\mathrm{NC}=\mathrm{C} 1) \mathrm{C}(\mathrm{C}(\mathrm{N} 2)=\mathrm{O})=\mathrm{C}(\mathrm{O}) \mathrm{C} 3=\mathrm{C} 2 \mathrm{CCCC} 3$
Hit $5 \quad \mathrm{NC} 1=\mathrm{NC}(\mathrm{NC} 2=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 2)=\mathrm{C} 3 \mathrm{C}(\mathrm{CC}(\mathrm{C} 4=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 4) \mathrm{CC} 3=\mathrm{N} 1)=\mathrm{O}$

Hit $6 \quad \mathrm{OC} 1=\mathrm{C} 2 \mathrm{C}(\mathrm{N}=\mathrm{CN} 2 \mathrm{CC} 3=\mathrm{CC}=\mathrm{CC}=\mathrm{C} 3)=\mathrm{NC}(\mathrm{N} 4 \mathrm{CCOCC} 4)=\mathrm{N} 1$

Table S2. Anti-proliferative activity of the VS hits in endothelial and tumor cell lines.

	Endothelial cells	Tumor cells
Compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$	$\mathrm{IC}_{50}(\mu \mathrm{M})$
	$\mathbf{M E B C}$	$\mathbf{L 1 2 1 0}$
Hit 1, compound 9	13 ± 5	13 ± 1
Hit 2	≥ 100	
Hit 3	>100	>250
Hit 4	≥ 100	
Hit 5	57 ± 14	>250
Hit 6	≥ 100	

Sandra, may you complete the table?

Figure S1. Displacement of MTC by hit 9. Fluorescence emission spectra (excitation 374 nm) of MTC (10 $\mu \mathrm{M})$ in the presence of $10 \mu \mathrm{M}$ tubulin and in the absence (black line) or presence (red line) of $9(20 \mu \mathrm{M})$.

Figure S2. Dose-response curves of compound 9 in endothelial and tumor cells.

Figure S3. Displacement of R-PT (A) and MTC (B) by 16c. (A) Fluorescence emission spectra (excitation 374 nm) of $0.2 \mu \mathrm{M} \mathrm{R-PT}$ in the presence of $0.2 \mu \mathrm{M}$ tubulin and in the absence (black line) or presence of 20 $\mu \mathrm{M}$ 16c. (B) Fluorescence emission spectra (excitation 374 nm) of $10 \mu \mathrm{M} \mathrm{MTC}$ in the presence of $10 \mu \mathrm{M}$ tubulin and in the absence (black line) or presence of $20 \mu \mathrm{M} \mathrm{16c}$.

