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Abstract

To forecast biological responses to changing environments, we need to understand how a species’s physiology varies
through space and time and assess how changes in physiological function due to environmental changes may interact with
phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing
environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing
temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog
tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their
critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates
of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered
that predator cues induced a 0.4uC higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator
cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to
the shape of the TPC, exposure to predator cues increased Topt by 1.5uC, while exposure to the herbicide marginally lowered
Topt by 0.4uC. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5uC higher than the
control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian
larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance
curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered
when forecasting biological responses to global warming.
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Introduction

Biological mechanisms underlying a response to environmental

changes can be quite complex. To forecast these biological

responses, we need to understand how a species’ physiology varies

through space and time [1,2] and assess how changes in

physiological function induced by environmental changes (e.g.,

increasing environmental temperatures) may interact with pheno-

typic changes induced by other types of environmental variation

[3,4,5,6].

Species can possess the ability to respond to new or altered

environments with flexible phenotypes that are environmentally

induced and can potentially contribute to adaptive evolution [7].

Stressful environments can induce non-adaptive plasticity, in-

creasing the variance around the mean phenotypic response or

distancing it from the favored optimum. Nevertheless, if plasticity

is adaptive and promotes establishment and persistence in a new

environment, by placing populations close enough to a new

phenotypic optimum for directional selection to act, it can

predictably enhance fitness and is most likely to facilitate adaptive

evolution on ecological timescales [7].

The presence of predators in the environment can induce

behavioral and morphological changes in prey that result in the

prey being less susceptible to the predator (e.g., [8,9,10,11]).

Furthermore, pesticides can also induce behavioral and morpho-

logical changes in organisms. Sublethal exposure to pesticides

early in life can make the individuals more tolerant of the pesticide

later in life [12,13] and they can induce phenotypic changes that

resemble predator-induced phenotypes [14,15,16,17]. In other

cases, pesticides impede the induction of predator-induced

morphology [18,19,20,21].

In the current scenario of climate change, there has been a

renewed interest in the thermal physiology of organisms and the

estimation of thermal tolerance and sensitivity, using physiological

traits such as the critical thermal maximum (CTmax; e.g., the

temperature at which animals become immobile [22,23]), the

optimum temperature (Topt) for performing some function, or the
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shape of the thermal performance curve (TPC), which describes

how an animal’s performance changes across a range of

temperatures. Although some pesticides are known to affect

CTmax and burst speed, usually in a negative way (e.g., [24]), there

is limited information on how pesticides affect optimum temper-

ature and performance over a range of temperatures (i.e. how

pesticides affect TPCs), especially for amphibians. Likewise, much

is known about predator-induced changes in organisms, including

some interactions with pesticides [17]. Predators also influence

thermoregulation and thermal preferences of prey, resulting in

behavioral changes and coevolution of thermal optima between

species [25]. Other than these behavioral responses that indirectly

affect physiology, little is known about whether predator cues can

directly affect the thermal physiology of prey.

We addressed these issues by studying the thermal physiology of

grey treefrog tadpoles (Hyla versicolor LeConte 1825) that were

exposed to predator cues and pesticides. Tadpoles are excellent

model organisms for this study because they are practically

isothermal with their aquatic environment [23] and their thermal

physiology traits (CTmax and Topt) are not influenced by

confounding processes such as dehydration. Tadpoles are also

well known for expressing predator-induced changes in behavior

and morphology (e.g., [9,26,27]. Furthermore, at least two species

of tadpoles can alter their morphology when exposed to the

herbicide Roundup and exhibit morphological changes that

closely resemble predator-induced changes in tadpoles [17].

Given that pollutants and predators can both affect many

aspects of tadpole biology, including development and metamor-

phosis (e.g., [28,29]), and the interaction of pollutants with other

stressors are often negative to the organism (e.g., glyphosate, [30]),

we expect the impact of these stressors on the thermal physiology

of tadpoles to be mainly negative. Therefore, we hypothesized that

tadpoles exposed a sublethal concentration of an herbicide will

have reduced tolerance to higher temperatures (CTmax) and

exhibit a lower optimal temperature (Topt) compared to tadpoles

not exposed to the herbicide. Furthermore, because predator cues

and the herbicide can induce deeper tails in tadpoles, we

hypothesized that tadpoles exposed to either stressor will suffer a

vertical shift upward in their TPC across a range of temperatures

[31], and have increased swimming performance (e.g., [32]).

However, it is also possible that the herbicide will have a negative

effect on swimming performance (e.g., [33]) if induced morpho-

logical changes are countered by other phenotypic changes that

impair swimming ability.

Methods

Inducing the tadpoles
The induction experiment was conducted at the University of

Pittsburgh’s Pymatuning Laboratory of Ecology in northwest

Pennsylvania, USA. The experiment used a completely random-

ized, 262 factorial design comprised of the presence or absence of

predator cues crossed with the presence or absence of an herbicide

(nominal concentrations of 0 or 2 mg active ingredient per liter

(a.e./L). Based on past studies, this herbicide concentration should

remain sublethal to gray treefrog tadpoles while inducing

morphology changes (e.g., [34,35]).

The four treatment combinations were replicated four times for

a total of 16 mesocosms, which consisted of 120-L wading pools,

set outdoors (air temperature ranged from 9uC to 28uC), that we

filled with 100 L of well water on 11 June 2011. We then added

100 g of dry leaves (Quercus spp.) and 5 g of rabbit chow to serve as

habitat structure and an initial nutrient source, respectively. We

also added an aliquot of zooplankton and phytoplankton that was

a mixture from 5 local ponds. Each mesocosm was equipped with

a predator cage constructed of 10610 cm well pipe covered with

window screen at each end. These cages allow the chemical cues

emitted during predation to diffuse through the water while

preventing the predators from killing the target tadpoles

[36,37,38]. Mesocosms were covered with a 60% shade cloth,

for the duration of the outdoor experiment.

To obtain tadpoles for the experiment, we collected .20

amplecting pairs of grey treefrogs from a nearby wetland

(41u 349 9.55" N, 80u 279 22.29" W) on 18, 21 and 22 May

2011, and allowed them to lay eggs in tubs containing aged well

water. Once the eggs hatched, the tadpoles were held in outdoor

pools and fed rabbit pellets ad libitum until used in the experiment.

On 15 June 2011, which we defined as day 0 of the experiment,

we added 40 tadpoles to each mesocosm from a mixture of the

clutches with an initial mass (6SE) of 37.562.1 mg per tadpole

(subsample, N = 20). On day 1, we applied the herbicide

treatment. To achieve nominal concentrations of 2 mg a.e./L,

we prepared 8 equal mixtures containing 372 mL of stock solution

(Roundup Power Max; concentration = 540 g a.e./L) and 250 ml

of water. For the eight mesocosms assigned the herbicide

treatment, we drizzled one mixture into each mesocosm. For the

eight mesocosms assigned the no-herbicide treatment, we drizzled

250 mL of water into each mesocosm. Approximately 1 hr after

dosing, we collected water samples from each tank to confirm the

concentration of the herbicide. An independent analysis found that

the concentrations in the water were 0 and 1.55 mg a.e./L

(Mississippi State Chemical Laboratory, Mississippi State, MS).

Observing lower actual concentrations is a common phenomenon

in mesocosm experiments (reviewed in Brock et al. 2000), likely as

the result of binding to surfaces in the mesocosm and degradation

of the samples before the testing is conducted. Jones et al. [39]

measured little herbicide breakdown for a similar time period, so

we assumed there was little change in herbicide concentration

during the induction experiment.

After sampling the water, we manipulated the predator

environment. For mesocosms assigned the no-predator treatment,

the cages remained empty. For mesocosms assigned the predator-

cue treatment, we placed a single dragonfly nymph (Anax junius)

inside the predator cage. Each dragonfly was fed ,300 mg of grey

treefrog tadpole biomass every 2 d (see [38]). Prior to each feeding,

we observed no tadpoles left in the predator cage, which indicates

that the dragonfly nymphs consumed the tadpoles in the cages.

The feeding continued until day 10 to allow tadpole growth and

induction by the herbicide and predator cues.

Determining the critical thermal maximum of the
tadpoles

On day 10, we brought sets of tadpoles into the laboratory to

allow them to acclimate at a temperature of 20uC (approximately

the average temperature experienced in the mesocosms), with a

12L:12D photoperiod, for 4 to 5 d before testing them for CTmax

and Topt [22,40]. During acclimation, tadpoles were fed rabbit

pellets ad libitum and we maintained the predator and herbicide

environments to help prevent the loss of any phenotype induction

[41]. All tested larvae were below Gosner stage 38 [42]. This is

important because tadpoles close to metamorphic climax exhibit a

significant decline in thermal tolerance [43].

We obtained upper critical thermal tolerances (CTmax) by using

a slightly modified version of Hutchison’s dynamic method [23].

We exposed tadpoles to a constant heating rate of 0.05uC min21

(3uC h21), which simulates a natural rate of temperature increase

in ponds (H. Duarte, M. Tejedo, J. Hammond, M. Katzenberger,

R.A. Relyea, unpublished data from dataloggers; see also [44])
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until we observed complete immobility, which signaled the

endpoint of the experiment. After reaching CTmax, we transferred

tadpoles to cooler water (,20uC) to allow recovery. After complete

recovery, the tadpoles were weighed and we found that the mass of

the tadpoles had increased by 13- to 15-fold since day 0. We tested

3 to 4 tadpoles from each mesocosm, for a total of 56 tadpoles

from the 16 mesocosms, as seen in Table 1.

We performed an analysis of variance (ANOVA) that used

CTmax as the dependent variable, predator cues and herbicide as

categorical factors (including the interaction of these factors), and

mesocosm nested within the interaction of predator cues and

herbicide (i.e. mesocosm nested within treatment). Given that

tadpole mass was not correlated with CTmax (see results), we did

not include it as a covariate. No data transformations were

required for this analysis.

Determining the thermal performance curves for tadpole
burst speed

Locomotor performance, measured as a TPC, is considered to

be a proxy of maximum physiological performance and has been

used to estimate optimum temperatures in amphibians [45,46].

We obtained TPCs by measuring each tadpole’s maximal burst

swimming speed (i.e. burst speed) across a range of temperatures.

To determine burst speed, tadpoles were placed individually in a

portable thermal bath (patent license ES 2372085), which consists

of an opened cross section methacrylate tube (1 m long 66 cm

wide 63 cm deep) filled with water of a given temperature. We

then gently prodded the tadpole with a thin stick to stimulate

swimming. Each trial was recorded using a digital camera (30

frames/s) positioned above the tube (JVC Everio GZ-MG505).

TPCs were defined using a set of six temperatures (20u, 24u, 28u,
32u, 35u and 38uC). This set includes temperatures tadpoles

experienced in the mesocosms (20u-32uC) and two more (35u and

38uC) which they might be exposed to in a scenario of increasing

environmental temperatures (but lower than their critical thermal

maximum). Temperatures were tested in a random order and, for

each temperature, tadpoles from the four treatments were tested in

the same session; therefore, all treatments had the same

temperature order. Prior to swimming, tadpoles were held

individually in 250-ml containers at the test temperature for

approximately 1 hr. A different set of tadpoles (total N = 570) was

used for each temperature (Table 2) and each wading pool was

represented equally in each set.

After the tadpole started to move, we used the software

Measurement in Motion [47] to estimate burst speed over three

frames (0.1 s) by measuring the distance the center of mass moved

between frames [48,49]. After conducting at least three bouts, we

used the fastest speed measured for a given tadpole as our measure

of that individual’s burst speed. Since maximal swimming speed

may scale with body size [45] and body size may confound the

effect of speed on escape success [50], we used size-corrected burst

speed (using tadpole total length) when constructing TPCs.

To describe the TPCs for burst speed, we used the Template

Mode of Variation method (TMV, [51]) which employs a

polynomial function to decompose variation among TPCs into

three predetermined modes of variation with biological connota-

tion: vertical shift (faster-slower), horizontal shift (hotter-colder),

and specialist-generalist trade-offs ([31]; see [51] and supporting

information for details on calculations). Since we tested tadpole

performance at six temperatures, we assumed that the common

template curve was a fourth-degree polynomial, as in previous

studies (e.g., [46]). Making this assumption avoids inadequately

describing TPCs, which can happen when using a lower-order

polynomial [51,52].

In addition to using the TMV method, we also calculated

maximum performance (zmax) to evaluate changes in maximum

swimming speed at the optimum temperature and a more

traditional measurement of performance breadth to confirm

specialist-generalist trade-offs (using B95, which is the range of

temperatures at which performance values exceed 95% of the

maximum;[53]). We used B95 instead of the traditional B80

because the lower limit of B80 would fall below 20uC, which is

outside the tested range of temperatures. All computations

regarding the TPCs, except for B95, were made using the Matlab

code by R. Izem (available online in the appendix of [51]). We also

confirmed the fit of each treatment’s curve and calculated

standard error (SE) of each curve’s parameters using nlinfit and

nlparci functions, respectively, in Matlab [54].

We conducted an ANOVA that used burst speed as the

dependent variable, temperature, predator cues and the herbicide

(including the interaction of these factors) as categorical factors

and, mesocosm nested within the interaction of predator cues and

herbicide (i.e. mesocosm nested within treatment). ANOVA

analysis was followed by a Tukey post-hoc test.

Assessing the morphology of the tadpoles
After the swimming trials, we determined the mass and

developmental stage of each tested tadpole. We then took lateral

photos of each tadpole and digitized the images for morphometric

measurements. We captured the shape of tadpoles by digitizing 10

landmarks and 15 semi-landmarks (see supporting information; see

also [49,55]) on each tadpole using tpsDig2 software [56]. We then

extracted partial warps and the uniform component with tpsRelw

software [57], which we used as our shape variables in a

subsequent analysis. We visualized variation in landmark positions

using the thin-plate spline approach (transformation grids, [58] in

MorphJ [59]. As an alternative approach to quantify tadpole

morphology, we also took the following linear measurements of

each tadpole: total tadpole length (TTL, distance between snout

and tip of tail fin), body length (BL, distance between snout and

point where bottom edge of tail muscle meets body), body depth

Table 1. Critical thermal maximum (CTmax), sample size (N) and body mass (Mass) of Hyla versicolor tadpoles, in four treatments.

Treatment N CTmax (6C±SE) Mass (mg±SE)

Control 13 41.7860.1 483.7622.9

Predator 13 42.1460.1 520.4629.3

Roundup 15 41.7660.1 545.4628.0

Predator + Roundup 15 42.1760.1 489.8634.2

Tested tadpoles are representative of the four mesocosms used for each treatment.
doi:10.1371/journal.pone.0098265.t001
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(BD, deepest point of the body), tail length (TL, distance between

point where bottom edge of tail muscle meets body and tip of tail

fin), muscle depth (MD, deepest point of the muscle) and tail depth

(TD, maximum depth of the tail fin).

We conducted canonical correlation analysis as a dimension-

reducing procedure to obtain two morphological indices (i.e. a

linear combination of shape variables); one was for the linear

measurements (MIlin) and the other was for the partial warps and

uniform component (MIgeo). We then examined these two indices

for correlations with burst speed (across all treatments; see [55]).

To determine if predator cues, herbicide, and their interaction

influenced tadpole size (i.e. centroid) or shape (MIlin or MIgeo), we

performed three ANOVAs followed by Tukey HSD post-hoc tests;

mesocosms were nested within the interaction of predator cues and

herbicide (i.e. mesocosm nested within treatment). Shape variables

(MIlin and MIgeo) and tadpole size (centroid) were then used as

continuous predictors, along with temperature, predator cues and

herbicide as a categorical predictors, in two ANCOVA analysis

(testing either MIlin or MIgeo separately), to evaluate their effects

on burst speed. We performed all analyses using Matlab [54],

except when mentioned otherwise, and used a significance level of

a= 0.05.

All experiments were approved by the University of Pittsburgh’s

Institutional Animal Care and Use Committee (Protocol

#12050451).

Results

Critical thermal maxima of the tadpoles
In our analysis of CTmax, there were no differences among

mesocosms within a given treatment. We found an effect of

predator cues but no effect of the herbicide or the interaction of

both (Table 3). Averaged across herbicide treatments, tadpoles

exposed to predators had a CTmax that was 0.4uC higher than

tadpoles not exposed to predators (Table 1). CTmax was not

correlated with tadpole mass (Pearson’s R = 20.17, p = 0.22).

Thermal performance curves for tadpole burst speed
When we test tadpole swimming ability across different water

temperatures, we found that swimming burst speed varied with

temperature (Table 2). When we used the TMV method on size-

corrected performance data, we obtained both a common

template curve, which provided a good approximation of the

common shape of each treatment’s curve (Fig. 1), and a three-

parameter shape-invariant model (with the use of a fourth-degree

polynomial), which explained over 99% of the variation for

swimming speed. Decomposition of the total variation into the

three pre-determined directions of variation reveals that TPCs for

swimming speed vary mostly in the specialist-generalist (53.27%)

direction and the vertical (45.98%) direction, but very little in the

horizontal (0.59%) direction. This indicates that tadpoles in the

control treatment had a wider swimming TPC than tadpoles

exposed to predator cues or the herbicide, even when comparing

more traditional measures of curve width (B95; Table 4, Fig. 2).

Thus, most of the variation in the TPCs is due to specialist-

generalist trade-offs and differences in overall performance (faster-

slower), rather than changes in Topt (hotter-colder). Indeed,

tadpoles raised in the herbicide treatment exhibited only a small

decrease in Topt (20.4uC) while tadpoles raised with predator cues

exhibited an increase in Topt (1.5uC). Tadpoles raised with both

predators and herbicide exhibited a Topt that was intermediate in

magnitude between the latter two treatments but still higher

(0.5uC) than tadpoles raised in the control treatment. The only

significant difference in Topt was between tadpoles exposed only to
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herbicide and those exposed only to predator cues (1.8uC; 2-tailed

t-test, p,0.05). Maximal performance (zmax) was marginally

correlated with performance breadth (Pearson’s R = 20.95,

p = 0.051).

Temperature and predator cues both influenced burst speed

(Table 5). There was also a significant interaction between

predator cues and herbicide. Tadpoles in the control treatment

had slower burst speeds accross all temperatures than tadpoles in

the other three treatments (all p,0.05). Tadpoles raised in the

predator treatment were also faster than those from herbicide

treatment (p,0.05). Furthermore, tadpoles in all treatments

containing predator cues or herbicide had higher maximum

performance (zmax) than tadpoles in the control treatment, so that

their burst speed at the optimum temperature was higher than the

burst speed of tadpoles raised without any cues. These differences

in the parameters of the TPCs can be seen as changes in the

overall shape of the curves (Fig. 2). Our analysis of burst speed also

revealed a significant effect of mesocosms (nested within

treatment), however the magnitude of this effect was much smaller

than in other effects, such as the interaction of predator cues and

herbicide (Table 5). Nevertheless, we checked for burst speed

differences among tanks of the same treatment and temperature

and we found no significant effect of mesocosm on burst speed, in

any of the treatment-temperature combinations (all p.0.05).

Induced morphology of the tadpoles
We observed size and shape changes in tadpoles exposed to the

herbicide and predator cue treatments (Fig. 3). Predator cues and

herbicide had no main effects on tadpole centroid size (Table 6a)

but they did have a significant interaction; tadpoles exposed to

predator cues + herbicide were smaller than those exposed only to

the herbicide or only to the predator cues (both p,0.05). Similarly,

tadpoles in the control treatment were smaller than those exposed

only to the herbicide or only to the predator cues (both p,0.05).

For geometric morphometric measurements, both predator cues

and herbicide influenced tadpole shape (Table 6b) and there was a

significant interaction between the two factors. Tadpoles raised in

the control treatment differed from those raised in the other three

treatments (all p,0.05), however these did not differ amongst

themselves. For linear measurements, only predator cues signifi-

cantly influenced shape of tadpoles (Table 6c). Tadpoles raised in

predator or predator + herbicide treatment differed from those

raised in herbicide or control treatments (all p,0.05). Mesocosm

effect on either centroid or shape (MIlin or MIgeo) was non-

significant (Table 6). Overall, compared to tadpoles in the control,

Table 3. ANOVA using CTmax as dependent variable, predator cues and Roundup as categorical factors (including the interaction
of these factors) and, mesocosm nested within the interaction of predator cues and Roundup, for Hyla versicolor.

SS d.f. MS F p

Predator 1.993 1 1.993 14.9 ,0.001

Roundup 0.006 1 0.006 0.04 0.834

Predator*Roundup 0.009 1 0.009 0.06 0.801

Mesocosm (Predator*Roundup) 1.329 12 0.111 0.83 0.622

Error 5.350 40 0.134

Univariate tests of significance for CTmax. In this model, we used Sigma-restricted parameterization and Type III sum of squares.
doi:10.1371/journal.pone.0098265.t003

Figure 1. Rescaled thermal performance curves for swimming speed in each treatment with fitted common template shape.
Common template shape z(T) is represented by a dashed line nad the treatments by solid lines. Each thermal performance curve of a treatment (i)
and temperature were standardized with respect to the estimates of height (h), location (m; Topt), and width (w) parameters from the fit to model.
Rescaled optimum temperature Topt = 0. (see [46,51]). Swimming z(T) = 1.6458–0.004T2–0.00023982T3+0.000003493T4.
doi:10.1371/journal.pone.0098265.g001
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tadpoles in the other three treatments exhibited relatively shorter

bodies. Furthermore, in the two treatments containing predator

cues, tadpoles exhibited an increase in their relative tail length and

tail depth (Fig. 3). Apart from temperature and predator cues,

burst speed was also influenced by tadpole’s size, either when using

morphometric geometric data (Table 7a) or linear measurements

(Table 7b). We also found a significant effect of shape on burst

speed when using geometric morphometric data (Table 7a).

Discussion

We discovered that predator cues and the herbicide Roundup

can affect the thermal physiology of Hyla versicolor tadpoles.

Predator cues induced tadpoles to have CTmax values that were

0.4uC higher whereas the herbicide had no effect. Predator cues

and Roundup also influenced the shape of the thermal perfor-

mance curves, resulting in changes in optimum temperature,

performance breadth and maximal performance (Fig. 2). Further-

more, predator cues also induced morphological changes that

increased the tadpoles’ burst speed.

Roundup, a glyphosate based broad-spectrum systemic herbi-

cide, did not have any effect on CTmax estimates of tadpoles.

However there have been reports of other contaminants affecting

the thermal physiology of vertebrates. Among insecticides, for

example, endosulfan (an organochlorine insecticide that affects the

central nervous system) and chlorpyrifos (an organophosphate

insecticide that inhibits acetylcholinesterase) are known to decrease

CTmax in fishes [60]. Other environmental contaminants, such as

cadmium and copper, can adversely affect the ability of fish to

withstand high temperature stress [61,62]. Whether all of these

observations in fishes can be extrapolated to other species of

aquatic organisms, such as tadpoles, is yet to be determined. Based

on these studies and our own results, it seems that the effects of

pesticides on CTmax may depend on the type of pesticide, the

concentration of the pesticide, and how it affects the organism (i.e.

its mode of action). There is the possibility that using higher

concentrations of the herbicide might induce a decrease in CTmax,

but higher concentrations will cause tadpole death [63]. Further-

more, the herbicide also did not interfere with the increase in

CTmax induced by predator cues; tadpoles exposed to predatorT
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Figure 2. Overall shape of the thermal performance curves for
each of the four induction treatments. Each treatment is
represented by a thermal performance curve for tadpole swimming
speed: control - solid line, predator - dashed line, Roundup - dotted line
and predator+Roundup - dash-dot line.
doi:10.1371/journal.pone.0098265.g002
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cues + herbicide had similar CTmax values to those exposed only to

predator cues.

Different methodological protocols and biological sources can

affect estimates of upper thermal tolerances (see [44,64]). For

example, the ramping rate used [65,66,67,68], the selection of

end-point [23], variations in previous thermal acclimation [40],

ontogenetic stage [43], time of day, and photoperiod [69] all may

promote shifts in amphibian upper thermal tolerances. We

discovered that predatory cues can also affect CTmax estimates

of prey. An increase in thermal tolerance of predator-induced

tadpoles would cause an increase in their warming tolerance,

which is the difference between CTmax and maximum tempera-

ture of the environment to which an ectotherm is exposed [70,71].

This means that tadpoles exposed to predator cues would be less

susceptible to acute thermal stress than tadpoles that were not

exposed to predator cues. In contrast, an exposure to the

herbicide, at least at the concentration used in our study, would

not affect the warming tolerance of tadpoles.

An exposure to predator cues and the herbicide had interactive

effects on tadpole burst speed. The interaction occurred because

the herbicide alone and predator cues alone each increased burst

speed compared to the control, but the combination of the

Table 5. ANOVA using burst speed as dependent variable, and temperature, mesocosm, predator cues and Roundup as
categorical predictors, with mesocosm nested within the interaction of predator cues and Roundup, for Hyla versicolor.

SS d.f. MS F p

Temperature 0.891 5 0.178 32.17 ,0.001

Predator 0.106 1 0.106 19.16 ,0.001

Roundup 0.002 1 0.002 0.38 0.537

Predator*Roundup 0.070 1 0.070 12.65 ,0.001

Mesocosm (Predator*Roundup) 0.127 12 0.010 1.92 0.03

Predator*Temperature 0.023 5 0.005 0.83 0.528

Roundup*Temperature 0.017 5 0.003 0.62 0.683

Predator*Roundup*Temperature 0.009 5 0.002 0.33 0.903

Error 3.085 546 0.006

Univariate tests of significance for burst speed. We used Sigma-restricted parameterization and Type III sum of squares.
doi:10.1371/journal.pone.0098265.t005

Figure 3. Transformation grids with landmarks and warped outline drawings for each treatment’s tadpole shape. a) Transformation
grids with landmarks (black dots) and vectors showing direction of variation; b) comparison of warped outline drawings for each treatment shape
(black) and control shape (grey). Transformation grids and warped outline drawings were magnified (x5) to better illustrate the differences.
C – Control, R – Roundup, P – Predator and PR – Predator + Roundup.
doi:10.1371/journal.pone.0098265.g003
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herbicide and predator cues induced an increase that was not

larger than predator cues alone.Therefore, since the combination

of the herbicide and predators cues was not additive, in the

presence of predator cues, exposure to the herbicide caused no

change in burst speed.

The presence of either predator cues or the herbicide narrowed

the performance breadth of the TPC while increasing maximal

performance. As performance breadth is negatively correlated

with maximal performance, we would expect a generalist-specialist

trade-off. Tadpoles from a treatment which induced a more

Table 6. ANOVAs to determine if predator cues and Roundup (including their interaction) influenced size (a; centroid), or shape (b
and c) of tadpoles (MIgeo, for geometric morphometric measurements, or MIlin, for linear measurements, respectively) with
mesocosm nested within the interaction of predator cues and Roundup (i.e. mesocosm nested within treatment).

a) Centroid (size) SS d.f. MS F p

Predator 19.9 1 19.91 0.97 0.326

Roundup 4.3 1 4.32 0.21 0.647

Predator*Roundup 521.7 1 521.7 25.38 ,0.001

Mesocosm (Predator*Roundup) 423.0 12 35.25 1.72 0.06

Error 11386.2 554 20.55

b) MIgeo (shape) SS d.f. MS F p

Predator 11.77 1 11.766 12.21 ,0.001

Roundup 5.17 1 5.172 5.37 0.021

Predator*Roundup 5.68 1 5.684 5.90 0.016

Mesocosm (Predator*Roundup) 12.37 12 1.031 1.07 0.383

Error 533.95 554 0.964

c) MIlin (shape) SS d.f. MS F p

Predator 29.35 1 29.348 30.95 ,0.001

Roundup 3.32 1 3.317 3.50 0.062

Predator*Roundup 2.46 1 2.463 2.60 0.108

Mesocosm (Predator*Roundup) 8.67 12 0.723 0.76 0.690

Error 525.32 554 0.948

We used Sigma-restricted parameterization and Type III (Effective hypothesis) sum of squares.
doi:10.1371/journal.pone.0098265.t006

Table 7. ANCOVA analysis using burst speed as dependent variable, shape variables MIgeo (a) or MIlin (b) and tadpole size
(centroid) as continuous predictors, alongside temperature, predator cues and Roundup as categorical predictors.

a) SS d.f. MS F p

Predator 0.068 1 0.068 15.01 ,0.001

Roundup 0.000 1 0.000 0.01 0.909

Temperature 0.197 5 0.039 8.66 ,0.001

Size (Centroid) 0.167 1 0.167 36.70 ,0.001

Shape (MIgeo) 0.129 1 0.129 28.27 ,0.001

Predator*Roundup 0.011 1 0.011 2.34 0.127

Error 2.544 559 0.005

b) SS d.f. MS F p

Predator 0.101 1 0.101 21.24 ,0.001

Roundup 0.003 1 0.003 0.59 0.443

Temperature 0.507 5 0.101 21.30 ,0.001

Size (Centroid) 0.410 1 0.410 86.09 ,0.001

Shape (MIlin) 0.011 1 0.011 2.37 0.124

Predator*Roundup 0.012 1 0.012 2.45 0.118

Error 2.661 559 0.005

Univariate tests of significance for burst speed. In both models, we used Sigma-restricted parameterization and Type III (Effective hypothesis) sum of squares.
doi:10.1371/journal.pone.0098265.t007
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specialist curve (as demonstrated by predator cues + herbicide)

would perform better at the optimum temperature but gradually

decrease in performance, as moving away from the optimum

temperature, until reaching a point were tadpoles from a

treatment which induced a more generalist curve (as demonstrated

by control) would outperform them (see [31,51]; Table 4).

However, we do not see a decline in performance at the extremes

of the thermal performance curve, at the tested temperatures, as a

result of this trade-off. This observation is confirmed by thermal

tolerance data where none of the tadpoles raised in any of the

treatments with predator cues or the herbicide had lower CTmax

than those from the control treatment. Instead, it appears the

expected decline in sub-optimal performance resulting from a

generalist-specialist trade-off is compensated by the increase in

overall performance, so that tadpoles raised in the control

treatment always perform, on average, worse than herbicide- or

predator-induced tadpoles, at least at the tested temperatures.

Therefore, when comparing thermal performance curves, the

resulting increase in overall performance was asymmetric, being

greater around the optimum temperature and lower at the

extreme temperatures.

Surprisingly, predator cues and the herbicide also produced

changes in the optimum temperature, but in opposite directions.

Of course, the small decrease in optimum temperature caused by

the herbicide (0.4uC) may have little or no biological relevance. In

contrast, the increase in optimum temperature promoted by

predator cues (approximately 1.5uC) may be important, especially

when new assessments suggested that environmental impacts will

require smaller degrees of global warming than previously thought

[72]. Since predator cues increase optimum temperature, the

difference between optimum temperature and the environmental

temperature should also increase (i.e. thermal safety margins

(TSM); see [70]), which would be beneficial to the tadpoles in the

current scenario of increasing global temperatures.

Previous studies have demonstrated that changes in the shape or

position of thermal performance curves can occur due to

acclimation (e.g., [73,74,75]) or that thermal performance curves

of different locomotor strategies for the same organism can have

different shapes (e.g., [46,76]). In the present study, we demon-

strate that the presence of sublethal concentrations of an herbicide

and cues from predators can also produce changes in the thermal

performance curves and therefore affect how tadpoles respond to

environmental temperature changes.

Although it has been documented that predators can affect the

behavioral thermoregulation of their prey (e.g., [25]), to our

knowledge this is the first study to demonstrate a predator altering

the thermal physiology of their prey by increasing CTmax,

increasing the optimum temperature, and producing changes in

the thermal performance curves. It has also been demonstrated

that Roundup’s lethality increases with competition stress [35] and

that predator cues can improve tadpole survival when tadpoles are

exposed to the herbicide under stratified water conditions [17].

Therefore, one could make the argument that acclimation to

predator cues might be beneficial under warmer temperatures.

However, we should also keep in mind that predation simulta-

neously has a negative effect on tadpole populations and can select

for particular phenotypes (see [9]). To display a predator-induced

phenotype, tadpoles need to detect chemical cues that are released

when other tadpoles (particularly conspecifics) are consumed. So,

the possible positive effects of predator cues on the thermal

physiology, in a global warming scenario, would only be beneficial

for those phenotypes that survive predation.

Predator cues in our study induced morphology changes

(relative smaller bodies, deeper tails and deeper tail muscle) that

were similar to those observed in previous studies (e.g., [77]).

These morphological changes likely explain why tadpoles exposed

to predator cues swam faster than control tadpoles. Exposure to

the herbicide (see figure 3) induced relative smaller bodies, and the

observed changes partially resembled the predator-induced

phenotype (see also [17]). The induction of relatively deeper

tadpole tails by the herbicide was less evident in the current work

than in the study of Relyea [17]. However, this may be due to a

number of differences in the experimental protocol including the

duration of exposure and a substantially different experimental

venue.

Predator cues and the herbicide caused interactive effects on

tadpole size. Tadpoles exposed to predator cues + herbicide were

smaller than those exposed only to the herbicide or only to

predator cues. Tadpoles raised in the control treatment also

tended to be smaller than those exposed only to the herbicide or

only to predator cues. This may explain why tadpoles from the

herbicide treatment also swam faster than tadpoles from the

control treatment. As a result, all three treatments had better

overall swimming performance than in control, with increase in

burst speed related to the magnitude of morphology change (more

induction, higher performance) and size. Furthermore, predator-

induced morphology changes can be reversed if cues are removed

[41]. As a result, some of the changes in the thermal performance

curve may also be reversible. If so, in the absence of cues, the

predator- and herbicide-induced TPC shapes would revert back to

the original curve (i.e. the control curve).

The mechanism underlying the ability of the herbicide to induce

morphological changes in tadpoles is still unknown. It has been

suggested that the herbicide may be interfering with the stress

hormones that induce anti-predator defenses [78] or that

herbicides and predator cues activate shared endocrinological

pathways [17]. We have demonstrated that predator cues and the

herbicide can affect the thermal physiology of tadpoles, although

not all changes occur in the same direction. However, the

mechanisms behind these thermal physiology changes are also

unknown, with possible scenarios arising from our results: a)

herbicide interferes only with the stress hormones that induce anti-

predator defenses; b) they do not share the same physiological

pathways, or at least not all of them; c) they both activate shared

endocrinological pathways but predator cues also indirectly

activate temperature-stress response mechanisms; or d) stress

response mechanisms are more general than previous thought and

predator-induced stress produces similar physiological responses as

temperature-induced stress.

Conclusions

Apart from inducing morphology changes, predator cues

promoted an increase in CTmax and optimum temperature of

Hyla versicolor tadpoles. As such, in the presence of predators, we

can expect tadpoles to have greater warming tolerance and

broader thermal safety margins. These changes might indirectly

help tadpoles cope with increasing environmental temperatures.

The herbicide Roundup is not only toxic to amphibians (and lethal

over certain concentrations), but it also produces changes in

morphology [17]. With this work, we now know that it also

interferes, to some extent, with the thermal physiology of tadpoles

(in particular in the thermal performance curves), although the

effect on warming tolerance and thermal safety margins appears to

be marginal. However, Roundup is just one of hundreds of

chemicals currently used in anthropogenic activities (e.g., agricul-

ture) and tadpoles can face predation by a wide variety of predator

species. Because combinations of pesticides, which are a common

Amphibian Responses to Environmental Stressors
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situation in natural environments, can have greater impacts than

each pesticide alone [79], future studies should test whether

combinations of pesticides and predators could have different

effects on the thermal physiology of organisms.

In the current scenario of climate change, it is important that we

understand the physiological mechanisms underlying tolerance to

abiotic stress [80,81] and the sensitivity of organisms to changes in

the environment [80,82]. However, it also is important that we

understand the indirect effects of physiological responses (in

particular thermal physiology) on species interactions, such as

predation, competition and disease transmission [2]. Therefore,

understanding the plasticity of thermal performance curves and

thermal limits (CTmax and CTmin) and how these parameters are

altered by environmental stressors may be critical to understand-

ing how physiological variation can influence a species’ response to

climate change [83].
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