Control of Vacuolar Dynamics and Regulation of Stomatal Aperture by Tonoplast Potassium Uptake

Zaida Andrés, Javier Pérez-Hormaeche, Eduardo O. Leidi, Kathrin Schlücking, Leonie Steinhorst, Deirdre McLachlan, Karin Schumacher, Alistair M. Hetherington, Jörg Kudla, Beatriz Cubero, José M. Pardo*

a. Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla – 41012, Spain. b. Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany. c. School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom. d. Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Stomatal movements rely on alterations of guard cell turgor. This requires massive K+ fluxes across the plasma and tonoplast membranes. Although ion influx into the cytosol of guard cells represents only a transit step to the vacuole, the transporters mediating K+ uptake into the vacuole remain to be identified. Here, we report that tonoplast-localized K+/H+ exchangers are pivotal in the vacuolar accumulation of K+ of guard cells and that Arabidopsis nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited distinctly impaired stomatal opening and closure responses. Abrogation of K+ accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. These results establish extensive flux of K+ into vacuoles not only as a physicochemical requisite for stomatal opening, but also as a critical component of the K+-homeostasis that is needed for stomatal closure. Moreover, our data suggest vacuolar K+ fluxes as crucial determinants of vacuolar dynamics that underlie stomatal movements.

Introduction

The rapid accumulation and release of K+ and of organic and inorganic anions by guard cells, controls the opening and closing of stomata and, thereby, gas exchange and transpiration of plants. The intracellular events that underlie stomatal opening start with plasma membrane hyperpolarization caused by the activation of H+-ATPases, which induces K+ uptake through voltage-gated inwardly rectifying K+ channels (1). Potassium uptake is accompanied by the electrophoretic entry of the counterions chloride, nitrate and sulfate, and by the synthesis of malate. These osmolytes, together with sucrose accumulation, increase the turgor in guard cells and thereby drive stomatal opening. Stomatal closure is initiated by activation of the plasma membrane localized chloride and nitrate efflux channels SLAC1 and SLA3 that are regulated by the SnRK2 protein kinase OST1 and the Ca2+-dependent protein kinases CPK21 and 23 (2, 3). CPK6 also activates SLAC1 and coordinately inhibits rectifying K+in channels to hinder stomatal opening (4, 5). Sulfate and organic acids exit the guard cell through R-type anion channels. The accompanying reduction in guard cell turgor results in stomatal closure (1).

Despite the established role of plasma membrane transport in guard cell function and stomatal movement, ion influx into the cytosol represents only a transit step to the vacuole since more than 90% of the solutes released from guard cells originate from vacuoles (6). In contrast to the plasma membrane, knowledge of the transport processes occurring in intracellular compartments of guard cells during stomatal movements is less advanced (7).

Only recently, AtALMT9 has been shown to act as a malate-induced chloride channel at the tonoplast that is required for stomatal opening (8). Vacuoles govern turgor-driven changes in guard cell volumes by increases and decreases in vacuolar volume during stomatal opening and closure, respectively, by more than 40% (9, 10). Monitoring the dynamic changes in guard cell vacuolar structures revealed an intense remodeling during stomatal movements (11, 12). Pharmacological and genetic approaches indicated that dynamic changes of the vacuole are crucial for achieving the full amplitude of stomatal movement (12-14). However, so far no specific tonoplast transport proteins or processes have been functionally linked to vacuolar dynamics during guard cell movements.

Cation channel activities mediating K+ release and stomatal closure have been characterized at the tonoplast, including fast vacuolar (FV), slow vacuolar (SV) and K+-selective vacuolar (VK) cation channels (7, 15). Genetic inactivation of K+-release channels leads to slower stomatal closure kinetics (7, 16). By contrast, the transporters responsible for the uptake of K+ into vacuoles against the vacuolar membrane potential that drive the stomatal aperture have remained unknown. We have recently reported that the tonoplast-localized K+/Na+/H+ exchangers NHX1 and NHX2 from Arabidopsis are involved in the accumulation of K+ into the vacuoles of plant cells thereby increasing their osmotic potential and driving the uptake of water that generates the turgor pressure necessary for cell expansion and growth (17). The involvement of K+/Na+/H+ exchangers in the regulation of plant transpiration was also proposed since the nhx1 nhx2 mutant exhibited enhanced transpirational water loss compared with wild type when subjected to osmotic stress. Here, to resolve whether active K+ uptake at the tonoplast directly regulates stomatal activity by mediating K+ accumulation in the

Significance

Rapid fluxes of K+ and other osmolytes in guard cells control the opening and closing of stomata, and thereby gas exchange and transpiration of plants. Despite the well established role of the plasma membrane of guard cells in stomatal function, osmolyte uptake into the cytosol represents only a transient step to the vacuole since more than 90% of the solutes accumulate in these organelles. We show that the tonoplast-localized K+/H+ exchangers mediate the vacuolar accumulation of K+ in guard cells and that activity of these transporters not only controls stomatal opening but also stomatal closure. We also establish vacuolar K+ over H+ exchange as a critical component involved in vacuolar remodelling and the regulation of vacuolar pH during stomatal movements.

Reserved for Publication Footnotes
Vacuolar K\(^+\) content and morphology of guard cells.

Two Arabidopsis double mutant lines were used in this study, the nhx1 nhx2-1 complete loss-of-function mutant (which we refer to from now onwards as ‘KO’ line) and line L14 carrying the hypomorphic allele nhx1-1 together with the null allele nhx2-1 (17). These knock-out and knock-down mutant lines are useful to learn how varying gene expression levels translate into discernible phenotypical variations. Indeed, the phenotype of the L14 line is similar to, but less severe than that of the KO line due to residual expression of NHX1, whereas single nhx1-2 or nhx2-1 mutants exhibited negligible growth disturbances (17).

Genes NHX1 and NHX2 are preferentially expressed in stomata compared to epidermal and mesophyll cells of leaves (17, 18). As highlighted by SEM images, the stomata of KO plants appeared consistently more open than those of the wild type.
morphologies and appeared deflated, suggesting that the lack of NHX function compromised the turgor of these guard cells and hindered their swelling capacity. Moreover, the KO mutant line had pavement cells that presented a more heterogeneous cell size distribution than the wild type (Supplemental Figure 1A). To assess whether stomatal lineage and development of guard cells was affected in the null nhx1 nhx2 plants, epidermal pavement cell and stomatal density were recorded on impressions of the leaf abaxial surface using dental resin. The KO line had significantly less pavement cells than the wild type, but here also the number of stomata per area unit was proportionally lower (Supplemental Figure 1B). Consequently, wild type and mutant lines had similar stomatal indexes, implying that the absence of NHX proteins does not alter the early development of guard cells.

Guard cells of open stomata accumulate large amounts of K\(^+\) in comparison to neighboring epidermal cells (17, 19). The size of the vacuolar K\(^+\) pool was estimated from freeze-fractured leaves exposing the interior of guard cells as described elsewhere (17, 20). Samples were collected 1-2 hours after dawn. The percent of K\(^+\) counts relative to total elemental counts in guard cells of wild type and L14 plants were 1.20 and 0.55, respectively (p<0.05 by the LSD method). The K\(^+\) vacuolar content of guard cells in the KO line could not be reliably determined, presumably because of

Fig. 3. Reduced water use of nhx1 nhx2 mutants. (A) Transpiration measurements of Col-0, L14 and KO plants during 4 days of drought stress. Pots were weighed twice daily, at the start of the dark period (D) and at the onset of the light period (L), and transpiration was calculated as the amount of water loss per area unit in each time interval (16 h dark/ 8h light). Data represent the mean and SE of at least 7 plants in individual pots per genotype. (B) Percentage of water loss along the drought assay in pots with Col-0, L14 and KO plants. Data represent mean and SE of at least 7 plants per genotype. To quantify the background water evaporation from the soil, identical pots without plants were used as control.

Fig. 4. Defective opening and closure of mutant stomata. (A) Light-induced stomatal opening. (B) ABA-induced stomatal closure. (C) Light-induced stomatal bioassays in the presence of 10 mM KCl or 50 mM NaCl. Data represent the mean and SE of the absolute values of aperture of at least 40 stomata per line and per treatment. Asterisks indicate statistically significant differences relative to the wild type for each treatment at p<0.001 in pairwise comparison by the Tukey’s HSD test. Letters indicate statistically significant differences between treatments for each line at p<0.001 in pairwise comparison by the Tukey’s HSD test.

Infrared thermography reveals altered transpiration rates in nhx1 nhx2 mutants

To investigate how impaired vacuolar K\(^+\) uptake impinged on stomatal function, transpiration rates of whole plants were analyzed by thermal imaging in a light-dark cycle under regular, non-stress growth conditions (21, 22). The leaf temperature of the wild type and of the mutant lines L14 and KO was recorded by obtaining thermal images of 3 to 4-week old plants at 1-min intervals in a 3.5/14/2.5 h light/dark/light cycle. As depicted in Figure 1, during the first light period the leaf temperature in

Footline Author
are shown in red (C and F) or have been omitted (D and E).

Vacuolar morphology of guard cells during stomatal movements. (A) Vacuolar structure of Col-0 and KO guard cells visualized with TIP1;1:GFP after dark incubation for 2h (left) and 3 µM fusicoccin treatment for 2h (right). (B) Vacuolar structure of Col-0 and KO guard cells visualized with TIP1;1:GFP after illumination for 2h (left) and followed by 10 µM ABA treatment (right). Right and left panels show bright field and GFP images of TIP1;1:GFP, respectively. Scale bar: 5 µm.

Vacuolar morphology in open stomata of wild type and single null mutants nhx1 nhx2 (Supplemental Figure 2A). By contrast, the stomatal conductance of nhx2-1, the double mutant (KO line), and in wild type plants at six different time points in a short-day diurnal period (8h day/16h night). The stomatal conductance of Col-0 leaves increased after dawn and reached a maximum at midday. No significant differences in conductance were found between the wild type and single null mutants nhx1-2 and nhx2-1 (Supplemental Figure 2A).

Disruption of vacuolar K+ uptake affects the diurnal cycles of stomatal movements

Stomatal movement is one of the many physiological processes controlled by the circadian clock. Opening starts shortly before dawn and closure anticipates dusk to optimize the gas exchange and photosynthetic carbon fixation while preventing undesired water loss (23). To investigate how disruption of vacuolar K+ uptake influenced stomatal responses to diurnal cycles, stomatal conductance was measured in leaves of single mutants (nhx1-1; nhx2-1), the double mutant (KO line), and in wild type plants at six different time points in a short-day diurnal period (8h day/16h night). The stomatal conductance of Col-0 leaves increased after dawn and reached a maximum at midday. No significant differences in conductance were found between the wild type and single null mutants nhx1-2 and nhx2-1 (Supplemental Figure 2A). By contrast, the stomatal conductance of KO plants exhibited a strongly impaired and delayed response during the day and reached a plateau at dusk, when stomatal conductance in the wild type had already declined (Figure 2A).
After 2 h of darkness the stomatal conductance of the wild type was further reduced, whereas the conductance of the KO mutant slowly declined during the dark period to reach values similar to those found at dawn. This data indicate that not only the amplitude of the stomatal movement was lower in the absence of active K$^+$ uptake at the tonoplast, but also that stomatal opening and closure in the mutant were more prolonged and delayed compared with the wild type.

Transcripts of NHX1, and to a lesser extent NHX2, have been reported to undergo circadian regulation in Arabidopsis (24, 25). To corroborate the microarray data, expression of NHX1 and NHX2 genes in the course of a light/dark cycle was determined by RT-PCR at five time points of the diurnal cycle in whole leaves (Figure 2B). The abundance of NHX1 transcript was high before dawn and then declined steadily under daylight (Figure 2C). By contrast, the NHX2 transcript abundance was low before dawn, climbed to a maximal 3.5-fold upregulation after 2 h of light and then declined steadily to basal levels under darkness. Although the RT-PCR data reflect the transcript abundance in whole leaves and not only guard cells, the diurnal variation of NHX2 mRNA abundance resembled the dynamics of stomatal conductance (Figure 2A,C). However, the stomatal conductance of the single mutant nhx2-1 was largely similar to that of the wild type, which could be due to the ca. 40% increase in NHX1 transcript abundance in the nhx2-1 mutant under light (Supplemental Figure 2). No compensatory upregulation of NHX2 was found in the reciprocal single mutant nhx1-2.

Transpiration and soil water consumption of nhx1 nhx2 mutants

Regulation of transpiration is critical for plant water relations and adaptation to water deficit. To study the physiological relevance of stomatal behavior in whole the nhx1 nhx2 mutant plants, transpiration and water consumption were measured in 7-week old Col-0, L14 and KO plants growing in soil and subjected to water withdrawal. During the first two days without watering the KO mutant showed higher transpiration rates during the dark periods than the Col-0 and L14 lines (Figure 3A). This is in accord with thermography (Figure 1) and stomatal conductance (Figure 2) measurements. By contrast, the two mutant lines exhibited less transpiration than the wild type during the first and second light periods. These results demonstrate that the L14 mutant is more affected in stomatal opening than in stomatal closure whereas the KO mutant is impaired in both processes. The transpiratory oscillations of the wild type changed toward lower transpiration values as the soil dried and plants started to wilt (Supplemental Figure 3A). Wild-type plants first showed wilting symptoms at day 2 after stopping watering, L14 plants after 4 days, and the KO mutant started to shrivel after 2 weeks. The latter survived for more than 25 days. Gravimetric measurements showed that pots with wild type plants had lost 60% of the soil water in 4 days, and that the KO mutant used negligible amounts of water (Figure 3B). Compared to the wild type, mutant lines presented lower K$^+$ contents in the aerial parts that correlated proportionally with shoot biomass (Supplemental Figure 3B). By contrast, when plants of wild-type and mutant lines were let to compete for soil water, no differences in survival were found (Supplemental Figure 3C). These results indicate that the amount of K$^+$ that plants were able to collect and store, and not water availability, limited the growth of the nhx1 nhx2 mutants.

Stomatal movements are severely impaired in nhx1 nhx2 mutant lines

To better understand guard cell behavior when energetically uphill vacuolar K$^+$ accumulation is compromised, stomatal responses to light and ABA were investigated on peels of the lower epidermis of wild type and mutant lines. Wild-type stomata were 4.6-fold more open under light than in the dark (Figure 4A). In marked contrast, both dark-induced closure and light-induced stomatal opening were significantly impaired in the L14 and KO lines compared to the wild type. Stomatal apertures in mutant plants kept in the dark were 2-fold that of the wild type, and increased only ~20-30% upon transfer to light. Together, these data indicate that both stomatal closure and stomatal opening processes were affected by mutations nhx1 nhx2. An impaired response was also observed when ABA-induced closure of light-opened stomata was tested (Figure 4B). Here, it is noteworthy that while there was a detectable 23% reduction in the stomatal pore in the L14 line after ABA application, the stomata in the KO line were largely unresponsive to the hormonal treatment.

Both ABA and external Ca$^{2+}$ cause increases in cytosolic levels of Ca$^{2+}$ that further relay the signal to downstream responses (1). Because ABA-induced changes in cytosolic pH precede long-term Ca$^{2+}$ transients (26-28) and tonoplast K$^+$/H$^+$ exchange might indirectly affect cytosolic pH (29), Ca$^{2+}$-induced stomatal closure bioassays were conducted to test signal relay

Footline Author
downstream ABA-induced cytolic alkalization. In this assay, stomata of L14 plants were again less responsive than the wild type (Supplemental Figure 4A), suggesting that the nhx1 nha2 knockout mutant exhibits distinct features that may substitute for K⁺ flux or transport protein have been experimentally linked to stomatal movements by taking K⁺ and that NHX exchangers play a specific and essential role in the vacuolar dynamics in guard cells, transgenic lines of Col-0 and mutant stomata in 50 mM NaCl was significantly higher than in closed stomata in 50 mM NaCl (Figure 4C). Light-induced aperture of mutant stomata in 50 mM NaCl was significantly higher than in 10 mM KCl after 2h, and stomata reached full aperture after 5 h incubation. Wild type and mutants alike failed to close Na⁺-opened stomata when treated with 1 µM ABA for 1 h under light. (Supplemental Figure 4C). Previous research has shown that, in Arabidopsis, stomatal closure is impaired after aperture in NaCl, whereas after recovery it was split into several vacuoles. Together, these results demonstrate that the vacuolar uptake of inorganic cations is a principal component of guard cell expansion and that NHX exchangers play a specific and essential role in the stomatal movements by taking K⁺ into the vacuole of guard cells of Arabidopsis. By contrast, they appear to be dispensable for Na⁺ accumulation.

Cation uptake is required for accurate regulation of vacuolar dynamics in guard cells.

Guard cell vacuoles undergo dramatic morphological and volume changes that coincide with aperture and closure of stomata (11-13). In fully opened stomata a large vacuole occupies most of the cellular volume whereas in closed stomata the vacuole forms a shrunk and convoluted, but mostly continuous structure. Although the rapid vacuolar dynamics of guard cells must somehow rely on fast changes in water potential, no specific osmolyte flux or transport protein have been experimentally linked to this process. To assess whether vacuolar K⁺ uptake affects the vacuolar dynamics in guard cells, transgenic lines of Col-0 and nhx1 nha2 knockout mutant expressing the tonoplast intrinsic protein TIP1;1 fused to GFP were created. Epidermal peels were harvested at the end of the night period and stomatal opening was induced chemically by adding 3 µM fuscoïcin while keeping the epidermal strips in the dark for 2 h. Closed stomata from untreated Col-0 epidermal peels exhibited the expected fragmented vacuolar pattern in confocal planes (Figure 5A). Three-dimensional rendering of guard cell vacuoles loaded with the vacuolar dye BCECF-AM revealed however that the vacuole was mostly a continuous structure (Figure 6A). Fuscoïcin-treated (Figure 5A) and light-opened stomata (Figure 5B, Figure 6B) appeared completely open in the wild type, and guard cells displayed just one or two large vacuoles occupying the entire cell. The stomatal aperture in the KO line after fusicoccin while keeping 3 µM of ABA for time-lapse confocal microscopy. Wild-type stomata were completely open prior to ABA application and fluorescence was observed on the vacuolar membrane of a single, large compartment that occupied most of the guard cell volume (Supplemental Figure 5). After 30 minutes, wild type stomata were completely closed and vacuoles were partitioned into several compartments as observed in confocal planes. By contrast, in the KO mutant the stomatal aperture and the vacuolar morphology did not change at any time before or after ABA application and the vacuolar structures appeared wrinkled and invaginated in smaller compartments (Supplemental Figure 5). Stomatal opening induced with 3 µM of fusicoccin recapitulated, in reverse, the dynamics observed during stomata closure (Supplemental Figure 6). Again, the guard cells of the KO mutant were largely unresponsive to the treatment and the vacuolar structures presented many tonoplast invaginations and smaller compartments. These observations demonstrate that vacuolar dynamics, which coincide with stomatal movements, are severely impaired in plants lacking K⁺/H⁺ exchangers and establish an essential function of K⁺ transport for the accurate regulation of vacuolar dynamics during guard cell movements. These results also suggest that the process of vacuolar remodeling is autonomous in guard cells and not significantly dependent on external effectors originated in neighboring cells since vacuolar dynamics in guard cells were virtually identical in epidermal peels and in leaf discs.

Together, the above data support the conclusion that rapid and drastic changes in vacuolar morphology are crucial mechanisms for guard cell regulation and strongly suggest causality between defective ion uptake at the tonoplast and the absence of vacuolar dynamics. To test if restoration of stomatal aperture in the KO mutant by Na⁺ supplementation (Figure 4C) was accompanied with normal vacuolar dynamics, epidermal strips were incubated for 2h under light in buffer containing 10 mM K⁺ or 50 mM Na⁺. Figure 7A shows that, in contrast to the dysfunctional process driven by K⁺, the stomatal aperture of the mutant plant in the presence of Na⁺ correlated with the re-establishment of vacuolar dynamics. The structure of Na⁺-filled vacuoles was however slightly different from that observed under K⁺ supplementation. When Na⁺ was used as osmoticum, the structure of the vacuolar compartment in both the wild type and the mutant was more intricate, with the presence of what appeared to be intravacuolar vesicles that were recalcitrant to BCECF-AM loading (Figure 7C). Sodium-loaded vacuoles in the KO line had a wavy surface compared to the wild type (Figure 7D). These findings highlight the importance of cellular turgor adjustment as prerequisite for allowing the dynamic reorganization of vacuolar morphology and volume changes that accompany guard cell movements.

Light-induced stomatal opening and dark-induced closure stomatal bioassays on epidermal peels of the Col-0 line expressing the NHX2 protein fused to GFP revealed that NHX2-GFP fluorescence was mainly observed on the vacuolar membrane.
when stomata were fully open (Figure 7B). However, NHX2:GFP fluorescence was observed in several tonoplast invaginations and vesicles in closed stomata, recapitulating what had been observed with the TIP1:1:GFP marker. These results indicate that NHX activity at the tonoplast is directly related to the vacuolar dynamics associated to stomata movements.

Guard cell vacuoles are more acidic in the nhx1 nhx2 mutant than in the wild type.

To determine the vacuolar pH (pHv) of wild-type and mutant guard cells, we established a novel fluorescence ratiometric method using the H\(^+\)-sensitive and cell-permeant dye Oregon Green 488 carboxylic acid diacetate in epidermal peels. Oregon Green, which has been used successfully to measure pH in endomembrane compartments in animal cells and fungi (37, 38), loaded specifically the vacuolar lumen of Arabidopsis guard cells (Supplemental Figure 7A). The ratiometric nature of this pH indicator avoids undesired effects caused by unequal loading depending on the compartment size or by differential concentration of the dye at different stages of the vacuolar re-structuration, while the measured fluorescence ratios can be converted to pHv values using an in situ calibration curve (Supplemental Figure 7B). Ratiometric fluorescence imaging of guard cell vacuoles in dark-closed stomata showed that the mutants had a significantly more acidic vacuolar lumen (Figure 8). Light-induced stomatal opening in the presence of 10 mM KCl elicited a statistically significant alkalization of wild-type vacuoles by 0.15±0.25 units, depending on the experiment, while the response in mutant vacuoles was curtailed, as was stomatal aperture itself. Notably, substituting NaCl for KCl in the incubation buffer enhanced the aperture of mutant stomata and brought the pHv to wild-type values. The results indicate that K\(^+\)/H\(^+\) exchange by NHX proteins is essential to maintain the correct pH in guard cell vacuoles and that restoration of stomatal opening by NaCl in the mutant correlates with the re-establishment of wild-type pHv values.

Discussion

Stomatal movements rely on turgor and volume changes in the guard cells. The main solutes involved in guard cell osmoregulation are K\(^+\) and sucrose, and accompanying anions (chloride, nitrate, sulfate and malate), depending on the environmental conditions and the time of the day (7, 39, 40). Due to the high mobility of K\(^+\) and because it is an energetically cheap solute, guard cells accumulate K\(^+\) salts in large amounts, mainly in the vacuole, to open the stomata (41). Accumulation of K\(^+\) into the vacuole against the electrochemical gradient is necessary to generate sufficient turgor for stomatal opening, and this uphill K\(^+\) transport has to be mediated by secondary active carriers (34, 42). Here, we show that this critical function is carried out by vacuolar K\(^+\)/H\(^+\) antiporters. Light- and fusicoccin-induced stomatal opening was severely impaired in nhx1 nhx2 mutants in the presence of KCl (Figures 4 and 5) and fully restored by NaCl (Figure 4). The restoration of vacuolar dynamics and wild-type pHv by incubation in NaCl strongly indicates that stomatal movement defects are not due to a general mechanical failure of mutant guard cells, but are linked to a process that is dependent on the ability to accumulate alkali cations in the vacuole. Mutant plants exhibited reduced stomatal conductance (Figure 2) and transpiration (Figure 3) compared with the wild type during the light photoperiod when the stomata open. The 50% reduction in maximal transpiration rate of the KO mutant relative to the wild type (Figure 2) was twice as large as the reduction in stomatal density (Supplemental Figure 1), indicating that the KO mutant had not only fewer stomata per leaf area unit but also that their aperture was compromised. Thermal imaging and stomatal bioassays showed that the leaky mutant presented a less severe stomatal dysfunction than the null double mutant. Presumably the activity of NHX1 remaining in the hypomorphic nhx1-1 allele allowed some accumulation of K\(^+\) into the vacuoles, thereby allowing stomatal opening and closure. This is consistent with the relative K\(^+\) contents of these mutant lines (Supplemental Figure 3B). It is worth noting that the curtailed and delayed responses of stomata in the null mutant in daily cycles led to the counterintuitive finding that mutant plants survived longer under water deprivation because the plants were not only smaller but they also transpired less per leaf area unit during the day, thus consuming less soil water. Water loss at night in the mutant was greater compared to the wild type, but this was apparently compensated by diurnal water savings (Figure 3). However, when wild type and mutant plants shared the soil and competed for water, the mutant plants had no selective advantage and wilted at the same rate than the wild type (Supplemental Figure 3C).

Although full stomatal opening was impaired in nhx1 nhx2 mutant plants, their stomata retained a limited response to diurnal cycles (Figure 2 and 3). The lowest limit for vacuolar K\(^+\) concentration appears to be 10 to 20 mM, which is thought to reflect equilibrium with the cytosol at a maximum trans-tonoplast voltage of 40 to 60 mV (42, 43). Systems modeling of guard cell transport and volume control suggested that bidirectional K\(^+\) transport across the tonoplast was largely mediated by the TPK channel, with only minor contributions of the FV and TPC channels (44). Our data indicate however that tonoplast K\(^+\) channels facilitated minimal K\(^+\) uptake into the vacuole of guard cells, that was by itself insufficient to promote full stomatal aperture in the nhx1 nhx2 mutants. The more acidic pHv in the mutant relative to the wild type is also in agreement with a substantial K\(^+\) cytosol-exchange by NHX proteins at the tonoplast thereby recycling H\(^+\) toward the cytosol. Sucrose and other organic osmolytes also accumulate in the vacuole of guard cells during stomatal opening and could explain the limited stomatal opening capacity observed in KO plants. However, the photosynthesis-dependent accumulation of sucrose mainly occurs during the late light period, when K\(^+\) concentrations have already decreased (39, 40). Prior K\(^+\) accumulation to drive the rapid stomatal opening at dawn is an essential prerequisite for the sucrose-dominated phase, indicating that in the afternoon sucrose replaces K\(^+\) for turgor maintenance instead of just enhancing stomatal opening. Our results are consistent with the two-phase osmoregulation in guard cells of Arabidopsis (19). Stomatal conductance increased sharply in wild-type plants but it progressed at a slow pace in the KO mutant, reaching its maximum by the end of the day presumably due to the comparatively slow accumulation of photosynthesis-dependent organic solutes (Figure 2). The slow release of the less mobile sucrose in the mutant. Therefore, NHX proteins are directly involved in the K\(^+\) accumulation that drives the rapid stomatal opening that takes place at the start of the light period, but their lack also irreparably affects the succeeding sugar-dependent phase.

Unexpectedly, stomata closure was also affected in nhx1 nhx2 mutants. Stomatal closure is largely dependent on the activation of ion efflux channels in the vacuolar and plasma membranes (7). Arabidopsis plants lacking the vacuolar K\(^+\)-release channel TPK1 display slower stomatal closure but normal opening kinetics (10), whereas inactivation of the plasma membrane anion release channel SLAC1 impaired both stomatal closure and opening (45, 46). The impairment of slac1 mutant on stomatal opening is due to the reduction of inward K\(^+\) channel activity and enhancement of outward K\(^+\) currents by a compensatory feedback control that is triggered by the increase of cytosolic Ca\(^{2+}\) and of 0.2 pH\(_{cyt}\) units in the slac1 mutant (45, 46). Impairment of stomatal closure in the nhx1 nhx2 mutants suggests that the requirement for active K\(^+\) uptake at the tonoplast represents not simply the end point in the process of stomatal opening. Instead, this finding implies that...
the K⁺ status of guard cells feeds-back on the closure of stomata by a yet unknown mechanism. Mechanistically, this inhibition of stomatal closure might be mediated through the combination of the 2-fold reduction in vacuolar K⁺ content (this work) and of enhanced K⁺ cytosolic accumulation in the nhx1 nhx2 mutant (17) that together could compromise depolarization of the tonoplast by vacuolar K⁺ efflux prior to stomatal closure. A similar mechanism has been suggested for the slightly impaired stomatal closure observed in Arabidopsis lacking the vacuolar anion/H⁺ exchanger AtCLCc (34, 47). Notably, the vacuolar chloride-uptake channel AtALM79 is required for fast and complete stomatal opening but has no effect on stomata closure (8), in contrast to defective K⁺ uptake.

Guard cell vacuoles undergo remarkable morphological changes that contribute to stomatal opening and closure movements (13). Vacuole remodeling allows a swift and dramatic reduction in cell volume for stomatal closure while maintaining the total membrane surface area that is essential for rapid stomatal reopening (11, 13, 48). Here, we have investigated the role of vacuolar K⁺ uptake in guard cell vacuolar dynamics during stomatal movements using Arabidopsis Col-0 and null nhx1 nhx2 plants expressing TIP1;1:GFP fusion. Three-dimensional reconstruction of wild-type vacuoles revealed a single or a few main continuous vacuolar compartments that appeared delimited and convoluted in closed stomata, and that expanded to form a readily detectable single vacuole in open stomata. Compared with control plants, null mutants were unable to merge and expand the smaller vacuolar compartments resulting in the failure of stomatal opening. Under stomata-closing conditions, guard cells of the KO plants contained several compartments that appeared to be smaller, and tonoplast invaginations and a wavy vacuolar surface that changed little over the time course of the treatment. This loss of vacuolar motility correlated with the inability of the null mutant to fully open and close the stomata. One of the mechanisms proposed for vacuolar expansion in guard cells consists of passive fusion of endosomes due to physical contact between neighboring vesicles that increase their size by accumulating ions and water (13). This may explain why the lack of K⁺ uptake at the stomatal appended the vacuolar morphology. The null mutant could not accumulate enough K⁺ and the subsequent water entry into the vesicles was impaired. Consequently, small vacuoles could not enlarge and fuse to each other. This conclusion is supported by the restoration of vacuolar dynamics and stomatal opening in the KO mutant when Na⁺ replaced K⁺ as the main osmoticum in the assay. Another not mutually exclusive mechanism could be provided by vesicle fusion caused by pH changes in the lumen of the vesicles and in their surrounding cytoplasm. In Saccharomyces cerevisiae, the endosomal Na⁺, K⁺/H⁺ antipporter homologous to the Arabidopsis NHX1 and NHX2 proteins regulates vesicle fusion by controlling the luminal pH through its ion exchange activity (49). The K⁺/H⁺ antipporter activity of the NHX proteins coupled to V-ATPase and V-PPases activities would drive these pH changes in plants. The vacuolar lumen is more acidic in guard cells of nhx1 nhx2 null mutants than in wild type (Figure 8) whereas the opposite was found in Arabidopsis mutants with defective vacuolar proton pumps VHA and VHP that had delayed ABA-induced stomatal closure (12). The lack of tonoplast K⁺/H⁺ exchangers could therefore impair stomatal function by affecting pH-dependent processes in addition to their contribution to the purely physicochemical component of turgor-driven stomatal movements. Acidification of the vacuolar lumen inhibits the opening of the tonoplast efflux channel TPC1 (50), which may contribute further to the inhibition of stomatal closure in nhx1 nhx2 plants. Taken together, these data suggest a two-tier contribution of K⁺/H⁺ exchangers in the stomatal movements in Arabidopsis. Ensuing the generation of proton gradients by the activation of the plasma membrane and tonoplast H⁺-pumps, the NHX proteins couple two simultaneous processes: the alkalization of the endosomal compartments to initiate vacuolar fusion which results in an increase of vacuolar surface area and volume, and the accumulation of active K⁺ with the subsequent entry of water and increase of cell turgor.

In summary, our results establish that the large uptake flux of K⁺ at the tonoplast of guard cells is not only a physicochemical requisite for stomatal opening, but also a critical step to sustain the K⁺ homeostasis that is needed for stomatal closure. Moreover, this study reveals that ion transport activity by NHX proteins represents the basis for the intense remodeling of the vacuoles and associated endosomes that take place concurrently with stomatal movements.

Materials and Methods

Plant material and growth conditions

Single and double mutants of Arabidopsis thaliana carrying aileles nhx1-1, nhx1-2 and nhx2-1 have been described elsewhere (17). Plants were grown on soil (Sanyo MLR-351) plant growth chamber under the daylight regime: 23/19°C, 60-70% relative humidity, 816 µmol m⁻² s⁻¹ illumination, and 250 µmol m⁻² s⁻¹ photosynthetically active radiation (PAR).

Gene constructs for plant transformation

The Nhx2:GFP and TIP1;1:GFP transusions were created using the GEMINI1 variant with enhanced fluorescence and optimized for translation in eukaryotic cells (51), and the DNA of the Nhx2 (At13g50300) and TIP1;1 (At12g36340) genes. Detailed information on primers, plasmid constructs, and production of transgenic lines is given in Supplemental Methods.

Thermal imaging

Thermal images of 3-4 week-old plants were obtained using a ThermoCam SC5000 infrared camera (Inframetrics, FLIR Systems) placed in a chamber with constant humidity (70%), temperature (21°C) and light intensity (90 µmol m⁻² s⁻¹). Images were obtained at 1-minute intervals in a 3,1/4/2,5h light/dark/light cycle. Leaf temperature was calculated as the average temperature of the pixels contained into a standard area drawn on leaves using the FLIR Altair software. Data represent the temperature moving average of two leaves per plant from three different plants per line. Representative images were saved as Biff TIFF files and treated with the analysis program ImageJ (National Institutes of Health, USA; http://rsbweb.nih.gov/ij/).

Stomatal conductance measurements

Leaf gas exchange was determined using the steady state porometer Li-1600 (LI-COR). Stomatal conductance (mmol of water m⁻² s⁻¹) was measured to 6 in 7-week-old plants. Measurements were recorded at six different points of the day: light onset, 2h and 4h of light, dusk, 2h and 4h after darkness. A total of 3 measurements for each genotype (3 plants per line) were recorded and mean and standard error calculated.

Stomatal bioassays

Light-induced stomatal opening bioassays were done on leaves of 4-6 week-old plants. Stomata abaxial epidermis were harvested at the end of the night period and incubated for 2h in darkness in stomatal incubation buffer containing 10 mM MES-KOH, 10 mM KCl, 50 mM CaCl₂, pH 6.5 and then for 2h under light (250 µmol m⁻² s⁻¹) at 22°C (16, 50, 52). In Na⁺-supported stomatal opening bioassays, abaxial epidermal strips were pre-incubated for 2h in darkness, then 2 mM and 5 mM of CaCl₂ or 0.1 µM of ABA were added, and stomatal closure was measured 2h after treatment. Four different plants were used for each experiment, taking one leaf of each plant per treatment.

Stomatal apertures were determined by measuring the inner width of the stomatal pore from captured photographs of a minimum of 40 stomata per line and condition. Stomatal bioassays were performed three times and measured as blind experiments.

Confocal microscopy of vacuolar dynamics

To monitor the vacuolar dynamics in guard cells during stomatal movements, bioassays were performed using the transgenic lines expressing the TIP1;1:GFP and NHX2-GFP proteins as described above but using 10 µM of ABA to promote stomatal closure and 3 µM of fusicoccin to stimulate stomatal opening. Images were taken with a Fluoview FV1000 Confozl Microscope (Olympus) using a 488-nm Ar/ArKr laser and a 63X objective with emission signals being collected at 525 ± 50 nm. Images were analyzed with the Fluoview 2.1 software (Olympus). For time-lapse experiments, leaf discs were pre-incubated in stomatal incubation buffer for 2h in the dark or under light, to close and open the stomata respectively. Microscope samples were prepared adding the stimulus (3 µM of fusicoccin to open the closed stomata or 10 µM of ABA to close the open stomata) and immediately images were captured with a FluoView 2.1 software (Olympus).
of single stomata at different times were taken. Interval times were the same for whole leaves, but varied among lines. Threedimensional renderings of guard cell vacuoles loaded with BCECF-AM were shown in Supplemental Figure 7A. After 10 min of staining at 22 °C in darkness, the epidermal peels were washed twice for 10 min in dye-free buffer. Then, the epidermal peels were incubated for 3 h and exposed to different stimuli, in 10 mM KCl, 10 mM Mes-KOH (pH 6.5), and 50 mM CaCl2. Fluorescence microscopy was performed on a Leica SP5 confocal laser scanning microscope equipped with an inverted DMi6000 microscope stand and a water immersion objective. The fluorescence signal was excited at 488 and 458 nm, respectively, and the emission was detected between 510 and 550 nm. To obtain the ratio values the images were processed as described (54). The ratio was then used to calculate the pH on the basis of a calibration curve (Supplemental Figure 7B). In situ calibration of OG-CADA was performed in epidermal peels, which were loaded with the fluorescent cell-permeant dye Oregon Green 488 carboxylic acid diacetate (OG-CADA) of pH 5.5. In situ calibration was strongly influenced by low-toxicity dispersing agent Pluronic F-127 (Molecular Probes). The low-toxicity dispersing agent Pluronic F-127 (Molecular Probes).

Drought assay and transpiration measurements

Acknowledgements.

We are indebted to Ingrida Mendoza, Maria A. Parrado and Ana I. Ferrer for technical assistance, to Melanie Krebs and Falco Kröger for assistance with vacuum dye loading and 3-D image rendering, and to Francisco J. Quintero and Irene Villafla for helpful discussions. This work was supported by grants BIO2009-08641 and BFU2012-35060 from Ministerio de Economía y Competitividad (MINECO, cofinanced by the European Regional Development Fund) to J.M.P., and by grants KU128/08 and HIS4224/E9 from the Committee for Scientific Research of the Polish Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors declare no financial or personal interests that could be construed to have influenced this work. Support Information This article contains supporting information (Supplementary text and figures).

46. Laanemets K et al. (2013) Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. *New Phytol* 197:88-98.

Supporting Information

This section contains 7 Supplementary Figures and 1 Table, with the corresponding Supplementary Methods.

Text S1

Elemental X-ray analysis

To estimate the size of the vacuolar K⁺ pool in guard cells, freeze-fractured leaves of L14 plants grown in LAK medium with 1 mM K⁺ were analyzed in a Scanning Electron Microscope fitted with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) as described by (1). Potassium contents in plant tissues were determined by measuring fresh- and dry-weight after drying samples at 70 °C for 48 h in a forced-air oven to obtain water contents (g water per g dry weight). Potassium was extracted by autoclaving finely ground material and then measured by atomic absorption spectrophotometry (Perkin-Elmer 1100B, Norwalk, CT, USA).

Gene constructs and transgenot lines

The C-terminus of the NHX2 and the N-terminus of the GFP polypeptides were modified by PCR using oligonucleotides NHX2-NgoMIV: 5'-ACCTCCGCCGAGGTTTACTAAGATC-3' and GFP-NgoMIV: 5'-GGCGCGGAGGTGGAGCAAGGCGAGG-3'. NgoMIV digestion of amplified sequences and subsequent ligation generated an in-frame fusion of GFP to the C-terminus of NHX2 that was cloned into the EcoRV site of the pBluescript polylinker. Next, the NHX2:GFP construct was moved as a 2998 bp XhoI-BamHI fragment to the plant transformation plasmid pBI321 (2). The C-terminus of TIP1;1 and the N-terminus of the GFP polypeptides were modified by PCR using oligonucleotides TIP-Not: 5′-CCACCAGCGGCGCTAGTCTGTGAGCTG-3' and GFP-Not: 5′-GCTGGCGCGGCGCGGTTGAGCAAGGCGAGGAGCTG-3'. NotI digestion of amplified sequences and ligation generated an in-frame fusion of GFP to the C-terminus of TIP1;1. Plasmid pBI321Kan-TIP:GFP was constructed by cloning the TIP1;1-GFP translational fusion into pBI321 as a 1497 bp XhoI-BamHI fragment. Plasmids pBI321Kan-TIP:GFP and pBI321NHX2:GFP were used to transform Col-0 wild-type plants. Single-copy homozygous transformants in Col-0 were selected after three cycles of self-crossing from a T₁ population that exhibited a 3:1 segregation of the KanR marker. Null nhx1 nhx2 mutant plants were both recalcitrant to transformation and resistant to kanamycin due to the mutagenic T-DNA insertions (1). Therefore, a hemizygote of genotype nhx1-2/nhx1-2 NHX2/nhx2-1 was transformed with the pBI321Hyp-TIP:GFP plasmid carrying the hygromycin resistance marker. This plasmid was obtained by replacing the NOS-NPTII-NOS expression cassette of pBI321Kan-TIP:GFP with a NOS-HptII-NOS cassette using the Ccl/PmeI sites. Hygromycin-resistant segregants carrying...
the TIP1;1:GFP construct were screened by diagnostic PCR with allele-specific primers designed to amplify wild-type or mutant NHX2 alleles to identify homozygous nhx1-2 nhx2-1 null mutants. *Agrobacterium tumefaciens*-mediated transformation was according to (3) and transgenic plants were selected on half-strength MS medium containing hygromycin (20 mg L⁻¹) or kanamycin (50 mg L⁻¹).

Semiquantitative RT-PCR

To study the transcriptional regulation of NHX1 and NHX2 genes along a day/night cycle, leaves of 6-week old Col-0 plants were harvested and frozen in liquid nitrogen at different time points: light onset, 2h and 4h of light, dusk, and 4h in the dark. Total RNA from leaves was extracted using TRIsure™ reagent according to the manufacturer’s instructions (Bioline, London, UK). Reverse transcription was performed on 1 µg of total RNA using the QuantiTect Reverse Transcription Kit following the manufacturer’s instruction (Qiagen, Hilden, Germany). PCR was performed with specific primers for NHX1 (forward 5’-GTATCTATGGCTCTTGCATACAAC-3’ and reverse 5’-ATCAAGCTTTTCTCCACGTACC-3’), NHX2 (forward 5’-CAGGGCACACAGAATGGCGCGGAATG-3’ and reverse 5’-GTCACCATAAGAGGGAAGACGCAAG-3’), and β-Tubulin-4 (TB4) (forward 5’-CAGTGCTCTGATTGCCACC-3’ and reverse 5’-GACAACATCTTAAAGTCTCGT-3’). Densiometry analysis of the bands in ethidium bromide-stained agarose gels was performed with the software Quantity One (Bio-Rad). The ratio between the NHX1/2 and TB4 transcripts was calculated to normalize for initial variations in sample concentration. Mean and standard error of the three replicas were calculated after normalization to TB4.

Real-Time RT-PCR

Total RNA was extracted from Arabidopsis leaves using the RNeasy plant mini kit (Qiagen, Hilden, Germany) and reverse transcription was performed on 1 µg of total RNA using the QuantiTect Reverse Transcription Kit following the manufacturer’s instruction (Qiagen, Hilden, Germany). Real-time PCR was performed using iTaq Universal SYBR Green Supermix (Bio-Rad), and the signals were detected on an iCYCLER (Bio-Rad). The cycling profile consisted of 95°C for 10 min followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. A melting curve from 60 to 90°C was run following the PCR cycling to confirm the specificity of the primers. The expression levels of NHX1 and NHX2 genes were normalized to the constitutive UBQ10 gene (At4g05320) by subtracting the cycle threshold (CT) value of UBQ10 from the CT value of the gene (ΔCT). The fold change was calculated as $2^{-\Delta\Delta CT}$ (mutant – ΔCT wild type). The results shown are from three technical replicates of three independent RNA samples obtained from three different plants per genotype. Samples were obtained at two different time points of the day/night cycle from the same plants used for determining stomatal conductance of nhx1-2 and nhx2-1 single
mutants. Primers used for qRT-PCR were:

- **NHX1qRT** 5'- GAGGTCGTTTGTACCC-3',
- **NHX1rtR** 5'- ATCAAGCTTTCTCCACGTTACCC-3',
- **NHX2qRT** 5'- GACTGAGAGCAGCCATGA-3',
- **NHX2rtR** 5'- GTCACCATAAGAGGAAGAGCAAG-3',
- **UBQ10F** 5'- GCCCTGTATAATCCCTGAATA-3',
- **UBQ10R** 5'- AAAGAGATAACAGGAACGAAACATAGT-3'

REFERENCES

LEGENDS TO SUPPORTING FIGURES

Figure S1. Altered morphology of stomata and leaf epidermis in the nhx1 nhx2 mutant
(A) SEM images of leaves from Arabidopsis Col-0 and the KO line grown in hydroponic culture with LAK medium at 1 mM KCl. Upper panels, apperaance of the lower epidermis, scale bars: 200 µm; note the irregular distribution of cell sizes in the mutant. Middle panels, groups of stomata in the abaxial epidermis, scale bars: 50 µm; note the deflated apperaance of the stomata show in the inset. Lower row panels, close up images of stomata, scale bars: 20 µm. (B) Epidermal cell density (left panel), stomatal density (middle) and stomatal index (right) calculated from dental resin impression images. Data represent means and SE from of least 42 images per line. Asterisks indicate statistically significant differences at $p<0.05$ in pairwise comparison by the Tukey’s HSD test.

Figure S2. Stomatal conductance and transcript abundance in single nhx1 and nhx2 mutants
(A) Stomatal conductance measurements in leaves of Col-0 and single mutant lines nhx1-2 and nhx2-1 at different time points of the day/night cycle. Dawn and dusk samples were collected 15 minutes before light was switched on and off, respectively. Data represent mean and SE of 3 plants per line. (B) Quantitative RT-PCR analysis of NHX1 and NHX2 mRNA expression levels in whole leaves at different time points of the day/night cycle. Samples were collected from plants shown in (A), with 3 technical replicas each (n = 9), at time points 2 h after the onset of light and after 4 hours in darkness. The transcript levels were normalized to the constitutive UBQ10 gene. Data shown are the means ± SE and represent the transcript levels of NHX1 in the nhx2-1 mutant plants and of NHX2 in nhx1-2 plants, relative to the transcript levels obtained for the wild-type Col-0 in the dark.

Figure S3. Plant growth and K^+ content under water stress.
(A) Col-0, L14 and KO plants growing in individual pots, before treatment and after 2, 4, 12 and 25 days after drought stress. (B) Shoot biomass and K^+ content on a dry matter basis of wild type plants (Col-0), the nhx1-1 nhx2-1 mutant line (L14), and the nhx1-2 nhx2-1 null mutant line (KO) grown in individual soil pots for 5 days without watering. The data correspond to plant samples (3-4 plants per line) of the experiment shown in (A). (C) Drought tolerance test of wild type Col-0 (W), L14 (L) and KO plants (K) growing in the same soil tray. Plants were grown for 6 weeks in short day conditions (upper panel) and then subjected to drought stress by ceasing watering for 12 days (lower panel).

Figure S4. Stomatal response to calcium and sodium salts.
(A) Calcium-induced stomata closure. Data represent the mean and SE of the absolute values of aperture of at least 150 stomata per line and treatment. Letters indicate statistically significant differences between treatments for each line at $p<0.001$ in pairwise comparison by the Tukey’s HSD test.
HSD test. **(B)** Stomatal opening in the presence of sodium. Light-induced stomatal opening bioassays with wild-type Col-0 plants were conducted in buffers containing 10 mM KCl or NaCl at 30, 50 and 75 mM. Data represent the mean and SE of the stomatal apertures of at least 40 stomata per treatment. Asterisks indicate statistically significant differences relative to the K	extsuperscript{+} treatment at $p<0.001$ in pairwise comparison by the Tukey’s HSD test. **(C)** Reversal of sodium-driven stomatal opening by ABA. Light-induced stomatal opening in 50 mM NaCl for 4 h was followed by treatment with 1 µM ABA for one additional hour. Data represent the mean and SE of the stomatal apertures of at least 50 stomata per treatment.

Figure S5. Time-lapse of vacuolar dynamics in leaf discs during stomatal closure.
Vacuolar structure of Col-0 and KO guard cells visualized in leaf discs with TIP1;1:GFP at different time points after 10 µM ABA treatment. Left and right panels show bright field and GFP images of TIP1;1:GFP, respectively. Scale bar: 5 µm.

Figure S6. Time-lapse of vacuolar dynamics in leaf discs during stomatal opening.
Vacuolar structures in guard cells of Col-0 and KO plants visualized with TIP1;1:GFP at different time points after 3 µM fusicoccin treatment. Left and right panels show bright field and fluorescence images of TIP1;1:GFP, respectively. Scale bar: 5 µm.

Figure S7. Vacuolar compartmentation of the dye and ratiometric pH calibration curve.
(A) Vacuolar lumen of open (upper panel) and closed (lower panel) wild-type stomata loaded with the pH-sensitive dye Oregon Green. Left and right panels show bright field and 488-nm-excited images, respectively. Scale bar: 5 µm. **(B)** The mean ratios obtained from dividing the pixel density of 488-nm-excited images by the pixel density of 458-nm-excited images from guard cell vacuoles loaded with the pH-sensitive dye Oregon Green were plotted against the pH of the equilibration buffer. Data represent means and SE from at least 20 stomata per treatment.
Epidermal cell density (mm2)

Stomatal density (mm2)

Stomatal Index (%)

A

Col-0
KO

B

Col-0
KO

Epidermal cell density (mm2)
Stomatal density (mm2)
Stomatal Index (%)

*
Stomatal conductance (nmol m$^{-2}$ s$^{-1}$)

A.

- **WT**: Red line
- **nhx1-2**: Blue line
- **nhx2-1**: Green line

B.

- **Relative expression**
 - **NHX1 transcript**
 - **NHX2 transcript**

<table>
<thead>
<tr>
<th></th>
<th>light</th>
<th>dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nhx2-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Col-0 and nhx2-1 refer to the wild type and nhx2-1 knockout, respectively.
 Shoot biomass (g DW plant\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>Col-0</th>
<th>L14</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K\(^+\) content (mg g DW plant\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>Col-0</th>
<th>L14</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Stomatal aperture (µm) as a function of Ca²⁺ (mM).

B. Stomatal aperture (µm) with different ion concentrations.

C. Stomatal aperture (µm) with Col-0, L14, and KO genotypes.
SUPPLEMENTARY TABLE

Table S1. Mean temperatures determined by thermal imaging of wild-type plants and *nhx1 nhx2* mutant lines at different day and night periods. Statistical significance of differences in mean temperatures between the wild type and mutant lines was determined by the Student’s *t*-test. **P < 0.001, * P < 0.05, and ns = no significant difference.

<table>
<thead>
<tr>
<th>Period (minutes)</th>
<th>Line</th>
<th>Mean ± SD (°C)</th>
<th>Paired differences Mean ± SD (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (40-170) Day</td>
<td>Col-0</td>
<td>20.822 ± 0.266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>20.880 ± 0.253</td>
<td>0.058 ± 0.022</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>21.110 ± 0.187</td>
<td>0.288 ± 0.084</td>
</tr>
<tr>
<td>P2 (300-400) Night</td>
<td>Col-0</td>
<td>20.512 ± 0.229</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>20.416 ± 0.226</td>
<td>0.097 ± 0.042</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>20.222 ± 0.171</td>
<td>0.290 ± 0.070</td>
</tr>
<tr>
<td>P3 (600-700) Night</td>
<td>Col-0</td>
<td>20.522 ± 0.366</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>20.429 ± 0.355</td>
<td>0.092 ± 0.037</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>20.158 ± 0.273</td>
<td>0.363 ± 0.111</td>
</tr>
<tr>
<td>P4 (800-900) Night</td>
<td>Col-0</td>
<td>20.464 ± 0.363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>20.455 ± 0.353</td>
<td>0.009 ± 0.036</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>20.189 ± 0.272</td>
<td>0.276 ± 0.105</td>
</tr>
<tr>
<td>P5 (950-1050) Night</td>
<td>Col-0</td>
<td>20.406 ± 0.165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>20.403 ± 0.170</td>
<td>0.002 ± 0.028*</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>20.147 ± 0.126</td>
<td>0.259 ± 0.055</td>
</tr>
<tr>
<td>P6 (1100-1227) Day</td>
<td>Col-0</td>
<td>20.984 ± 0.144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L14</td>
<td>21.073 ± 0.139</td>
<td>0.089 ± 0.019</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>21.197 ± 0.129</td>
<td>0.213 ± 0.069</td>
</tr>
</tbody>
</table>