Sensor Placement for Fault Diagnosis Performance Maximization under Budget Constraints

Ramon Sarrate, Fatiha Nejjari and Albert Rosich

Abstract—This paper presents a strategy based on fault diagnosability maximization for optimally locating sensors in Fuel Cell Stack Systems. The goal is to characterize and determine a sensor set that guarantees a maximum degree of diagnosability and does not exceed a maximum sensor set cost constraint. The strategy is based on the structural model of the system in study. Structural analysis is a powerful tool for dealing with complex nonlinear systems. The proposed approach is successfully applied to a Fuel Cell Stack System.

1. INTRODUCTION

The problem of sensor placement for Fault Detection and Isolation (FDI) consists in determining the optimal set of instruments such that a predefined set of faults are detected and isolated. The usual objective to minimize in the sensor placement problem is the sensor cost. The sensor placement problem can then be viewed as a combinatorial problem that consists in finding a sensor combination that fulfills diagnosis specifications.

Solving the sensor placement for diagnosis can be treated from many different points of view. Indeed, such a problem depends on the kind of system description, the required diagnosis specifications, as well as the technique used to implement the diagnosis system. Because of this, developing a sensor placement method, that works for all possible fault diagnosis systems, is unattainable. In this paper, fault diagnosis systems are based on consistency checking by means of structural models. The required diagnosis specifications to be fulfilled are fault detection and isolation for a predefined set of faults under budget constraints.

Some works devoted to sensor placement for diagnosis using graph tools can be found in [1], [2], [3], [4], [5] and [6]. All these works use a structural model-based approach and define different diagnosis specifications to solve the sensor placement problem. A structural model is a coarse model description, based on a bi-partite graph, that can be obtained early in the development process, without major engineering efforts. This kind of models is suitable to handle large scale and complex systems since efficient graph-based tools can be used and do not have numerical problems. Structural analysis is a powerful tool for early determination of fault diagnosis performances.

In structural model based diagnosis, consistency may be checked by using a set of redundant sub-models (i.e. Minimal Structurally Overdetermined (MSO) sets of equations). A residual generator can be implemented from an MSO set by computing the internal unknown variables through a convenient manipulation of the equations and later checking consistency in a redundant equation. This concept is known [7] as a causal interpretation of the computability. The result is a directed bi-partite graph, named computation sequence, that shows how internal values can be computed from the equations (value propagation) in every redundant sub-model. However, to guarantee that the residual is generated by using non-linear equations, the structural model framework needs to be adapted in order to handle causal computability. Few works focus this causal assignment in the fault diagnosis field. For instance, in [8] causality is taken into account in the computation of the set of redundant sub-models. In [9] causality is treated in derivative and integral computations by considering which solver tools are available, whereas in [10] the causality of invertible function is fitted in the structural analysis. An MSO set of equations has the property of a complete matching in the unknown variable set, plus an extra non-matched equation named the redundant equation. This redundant equation is used for checking consistency.

This paper presents a new sensor placement algorithm based on an extension of the work done in [11] that takes into account maximum diagnosability specifications. The sensor placement methodology is applied to a fuel cell system. A fuel cell system benchmark is used and some faults are defined to be diagnosed. The goal consists in finding the best diagnosis performance that can be achieved by installing a specific number of sensors under budget constraints. The strategy is based on the structural model of the Fuel Cell Stack system (FCS).

Fuel cell systems are receiving much attention in the last decade as good candidates for clean electricity generation. In this work, a fuel cell system benchmark is used and some faults are defined to be diagnosed. An FCS is a complex system with many components interacting with each others and combining thermodynamic, hydraulic and electric phenomena. Faults, which are unobservable damages affecting components of the FCS, can occur due to many causes. Some are serious and must require to stop the system, or to put it in a safety mode while others have minor impact and should only be reported for being repaired off-board.

The performance of FCS as all industrial processes is
strongly dependent on available sensor measurements. Inaccurate measurements resulting from insufficient measurements or improper sensor placement can significantly deteriorate fault observability and process control.

A reduced number of papers devoted to model-based diagnosis for FCS systems has been found. In [12], four faults related to several subsystems of the FCS system are diagnosed by using Bayesian networks. The faults concern the air-reactor blower, the refrigeration system, a fuel loss in the membrane (also known as fuel crossover) and the hydrogen pressure. In [13], a set of relative residuals are developed to detect hydrogen leaks in the anode side. Finally, in [15], a set of structured residuals is obtained from a bond-graph model of a FCS system.

The paper is organized as follows: In Section II, the sensor placement problem tackled in this paper is presented. Section III formally introduces the diagnosis framework based on structural models. Section IV describes the algorithm used to solve the aforementioned problem. In Section V, the sensor placement methodology is applied to a Fuel Cell Stack System. Finally, some conclusions and remarks are given in Section VI.

II. PROBLEM FORMULATION

Usually, the sensor placement problem is presented as an optimization problem where the best sensor configuration fulfilling some given diagnosis specifications is sought, see e.g. [16] and [17]. Nevertheless, ensuring diagnosis specifications may let to an optimal solution with a large cost and thus not desirable for a practical implementation. In this paper, the optimal problem is slightly modified so that only sensor configurations with a lower cost than a preestablished value are considered as possible solutions. From this subset, the sensor configuration with the best diagnosis performance will be sought.

Let S be the candidate sensor set and \bar{C} the maximum admissible sensor cost. Then, the problem can be roughly stated as the choice of a sensor configuration $S \subseteq S$ with a cost $C(S) \leq \bar{C}$ such that the diagnosis performance is maximised. In addition, if several sensor configurations exist that satisfy these conditions, the one with the lowest cost will be chosen.

In model-based diagnosis, fault detectability and fault isolability are the main objectives. Fault detectability is the ability of monitoring a fault occurrence in a system, whereas fault isolability concerns the capacity of distinguishing between two possible fault occurrences. Thus, the diagnosis performance will be stated based on fault detectability and isolability properties. In this work, the single fault assumption will hold (i.e., multiple faults will not be covered) and no candidate sensor fault will be considered.

Let F be the set of faults that must be monitored, then $F_D(S) \subseteq F$ denotes the detectable fault set when a sensor configuration $S \subseteq S$ is installed in the system. Fault isolability can be characterised in a similar way by means of pairs of faults. Let $\mathbf{F} : F \times F$ be all fault pairs permutations from F, then $F_I(S) \subseteq \mathbf{F}$ denotes the set of isolable fault pairs when the sensor configuration $S \subseteq S$ is chosen for installation (i.e., $(f_i, f_j) \in F_I(S)$ means that fault f_i is isolable from f_j when the sensor set S is installed in the system).

Based on the $F_I(S)$ set, the isolability index $I(S)$ is defined as the number of isolability pairs when the sensor configuration S is installed, i.e.,

$$I(S) = |F_I(S)|$$

where $|\cdot|$ denotes the cardinality of the set.

To solve the sensor placement problem proposed in this paper, a system description M is also required. Such description will allow the computation of the detectable faults and the isolability index for a given sensor configuration. Hence, the sensor placement for fault diagnosis can be formally stated as follows:

GIVEN a candidate sensor set S, a system description M, a fault set F, and a maximum admissible sensor configuration cost \bar{C}.

FIND a sensor configuration $S \subseteq S$ such that:

1) its cost does not exceeds the maximum admissible cost,
2) all faults in F are detectable,
3) the number of isolable fault pairs is maximised, and
4) its cost is minimal among all sensor configurations satisfying conditions 1, 2, and 3.

It is worth noticing that other diagnosis performance indexes, also designed for sensor placement, could be used here, see for example [18] and [5]. However, these indexes may fail at representing maximum fault isolability.

The objective of this paper is to derive an algorithm that computes a solution for the aforementioned problem. This algorithm will perform a search through different sensors configurations until the solution is ensured.

III. FAULT DIAGNOSIS BASED ON STRUCTURAL MODELS

A structural model approach will be used to solve the sensor placement problem stated in the previous section. The analysis of the model structure has been widely used in the area of model-based diagnosis [7]. Therefore, consistent tools exist in order to perform diagnosability analysis and consequently compute the set of detectable and isolable faults.

The structural model is often defined as a bipartite graph $G(M, X, A)$, where M is a set of model equations, X a set of unknown variables and A a set of edges, such that $(e_i, x_j) \in A$ as long as equation $e_i \in M$ depends on variable $x_j \in X$. A structural model is a graph representation of the analytical model structure since only the relation between variables and equations is taken into account, neglecting the mathematical expression of this relation.

Structural modelling is suitable for an early stage of the system design, when the precise model parameters are not
known yet, but it is possible to determine which variables are related to each equation. Furthermore, the diagnosis analysis based on structural models is performed by means of graph-based methods which have no numerical problems and are more efficient, in general, than analytical methods. However, due to its simple description, it cannot be ensured that the diagnosis performance obtained from structural models will hold for the real system. Thus, only best case results can be computed.

To mitigate this problem, one possible approach involves taking into account how unknown model variables are computed in order to perform the diagnosis. Here, the framework proposed in [19] is adopted. In this framework, a causal relation for each variable-equation pair is defined. The result is a structural sub-model, known as causally computable sub-model, where the computation of all unknown variables is ensured by straightforward value propagation, i.e., numerical solvers are not required. For further information on this framework, the reader is referred to the aforementioned reference.

It is well-known that the over-determined part of the model is the only useful part for system monitoring [7]. The Dulmage-Mendelsohn (DM) decomposition [20] is a bipartite graph decomposition that defines a partition on the set of model equations M. It turns out that one of these parts is the over-determined part of the model and is represented as M^+. The diagnosis analysis is next performed based on the structural model properties under the causal computable framework. Specifically, fault detectability and isolability are defined as properties of the over-determined part of the model [2]. First, it is assumed that a single fault $f \in F$ can only violate one equation (known as fault equation), denoted by $e_f \in M$.

Definition 1: A fault $f \in F$ is (causally structurally) detectable in a model described by the set of equations M if

$$e_f \in E^+$$

(2)

where E is the causally computable part of M. Remark that the procedure to compute E from M is described in [19].

Definition 2: A fault f_i is (causally structurally) isolable from f_j in a model described by the set of equations M if

$$e_{f_i} \in E^+_i$$

(3)

where E_{f_i} is the causally computable part of $M \setminus \{e_{f_i}\}$.

Without loss of generality, it is assumed that a sensor $s_i \in S$ can only measure one single unknown variable $x_i \in X$. In the structural framework, such sensor will be represented by one single equation denoted as e_s (known as sensor equation). Given a set of sensors S, the set of sensor equations is denoted as M_S. Thus, given a candidate sensor configuration S and a model M, the updated system model corresponds to $M \cup M_S$.

From Definition 1, $F_D(S)$ can be computed as

$$F_D(S) = \{f \in F \mid e_f \in E_S^+\}$$

(4)

where E_S is the causally computable part of $M \cup M_S$, and from Definition 2, $F_I(S)$ can be computed as

$$F_I(S) = \{f_i, f_j \in S \mid e_{f_i} \in E_I^+\}$$

(5)

where $E_{f_i|S}$ is the causally computable part of $M_S \cup (M \setminus \{e_{f_i}\})$.

It is worth noting that testing different sensor configurations involves different sensor equation sets, M_S, in (4) and (5) while the other sets remain unchanged.

Remark that isolability index, $I(S)$ is directly computed as the number of elements in $F_I(S)$, according to (1).

IV. OPTIMAL SENSOR PLACEMENT ALGORITHM

The sensor placement problem stated in Section II is solved by Algorithm 1, which is based on a depth-first branch and bound search.

Algorithm 1

```plaintext
S* = searchOpC(node, S*)

childNode.R := node.R

for all s ∈ node.R ordered in decreasing cost do

    childNode.S := node.S \ {s}
    childNode.R := node.R \ {s}

    if C(childNode.S \ childNode.R) > C then
        return S*
    end if

    if I(childNode.S) = I(S*) then
        if C(childNode.S \ childNode.R) < C(S*) then
            if F_D(childNode.S) = F then
                if C(childNode.S) < C(S*) then
                    S* := childNode.S % update best solution
                end if
            end if
        end if
    end if

    else
        if I(childNode.S) = I(Node.S) then
            return S*
        end if
    else
        if I(childNode.S) > I(S*) and F_D(childNode.S) = F then
            if C(childNode.S) ≤ C then
                S* := childNode.S % update best solution
            end if
        end if
    end if
end for
return S*
```

Every node in the search tree consists of two sensor sets and:

- node.S, the sensor configuration that the node represents.
- node.R, the set of sensors that are allowed to be removed in its child nodes.
Throughout the search, the best solution is updated in S^* whenever a feasible sensor configuration\(^1\) is found that satisfies one of the following two conditions:

- This sensor configuration has a cost not greater than the maximum admissible sensor set cost and the fault isolability index of the current best sensor configuration is improved.
- The fault isolability index of the current best sensor configuration is matched but its cost is greater than that of this sensor configuration.

A branch operation is initiated\(^2\) whenever a feasible sensor configuration is found that satisfies one of the following two conditions:

- The lowest reachable sensor configuration cost in a branch exploration does not exceed the maximum admissible sensor set cost and the fault isolability index of the current best sensor configuration is improved.
- The lowest reachable sensor configuration cost in a branch exploration is lower than the current best sensor configuration cost and the fault isolability index of the current best sensor configuration is matched.

A branch operation is aborted at some child node whenever any of the following three conditions hold:

- **C1A**: The fault isolability index corresponding to the node is worse than the current best one.
- **C2A**: The node does not correspond to a feasible sensor configuration.
- **C3A**: The fault isolability index corresponding to the node matches the current best one but not that of the parent node, and the current best sensor configuration cost does not exceed the lowest reachable sensor configuration cost in a branch exploration.

A branch operation always involves removing a sensor from a sensor configuration, so if condition C1A holds then no sub-node can improve the best isolability index either. Moreover, if condition C2A holds then no sub-node corresponds to a feasible sensor configuration either. Condition C3A concerns a node that matches the current best isolability index and no descendant can improve the current best cost.

A branch operation involves visiting the child nodes of a parent node. Aborting a branch operation at a parent node means that a call to searchOp_C returns. A branch operation is aborted at a parent node whenever any of the following two conditions hold:

- **C1B**: All child nodes that are ancestors of some sensor configurations which does not exceed the maximum admissible sensor set cost have been already visited.
- **C2B**: The fault isolability index corresponding to the node matches the current best one and that of the parent node, and all child nodes that are ancestors of some sensor configurations that can improve the current best sensor configuration cost have been already visited.

Condition C1B occurs when the lowest reachable sensor configuration cost in a branch exploration exceeds the maximum admissible sensor set cost. Then, visiting the rest of the child nodes is not worth it. On the other hand, condition C2B occurs when the current best sensor configuration cost does not exceed the lowest reachable sensor configuration cost in a branch exploration.

Algorithm 1 is initialised as follows:

1. The root node of the search tree corresponds to the candidate sensor set: $\text{node}.S := \text{node}.R = S$.
2. The current best sensor configuration corresponds to the empty set: $S^* := \emptyset$.

\section{Application to fuel cell system}

\subsection{Fuel-cell system model}

A fuel cell is an electrochemical energy converter that converts the chemical energy of fuel into electrical current. A model for a Fuel Cell system was proposed in [21] and further information can be found in [22] and [23]. This model is widely accepted nowadays in the control community as a good representation of the behavior of an actual fuel cell for control purposes. The model, see Fig. 1, includes a very detailed description of the air compressor, the inlet and return cathode manifolds, the static air cooler, the static humidifier, the hydrogen flow and the PEM fuel cell stack. The fuel cell stack model is further decomposed in four main subsystems: stack voltage, cathode flow, anode flow and membrane hydration. In the model, it is assumed that the temperature is known and constant since its dynamic is much more slower than those of the rest of the model.

The model was originally developed for control purposes. So, it is necessary to first pinpoint which equations belong to each component. In order to do so, every component is modelled apart. This means that internal and external variables are considered apart for each component, and then extra equations will be defined to interconnect the different components. Following this procedure, the component behaviour can be easily modelled, as well as system faults defined. Note that, by doing this, the number of variables and equations involving the complete model is increased. However, the redundancy degree is preserved, meaning that no extra computing effort is expected. In fact, all the structural properties needed for diagnosis will remain unaltered.

\footnote{A feasible configuration means a sensor configuration such that all $f \in F$ are detectable.}

\footnote{Initiating a branch operation involves a recursive call to searchOp_C.}
The resulting FCS system model is a complex and large-scale model involving 96 equations and 96 unknown variables.

Three different kinds of equations are distinguished: component equations, known variable equations and component interconnection equations. Component equations refer to the equations that model the FCS system components. Known variables equations are introduced in the model to indicate that some model variables are assumed known. Component interconnection equations describe the interconnections among components.

In Figure 2, the resulting structural model is depicted in matrix form where the equation set corresponds to rows and the variable set corresponds to columns. A dot in the \((i,j)\) element indicates that there exists an edge incident to equation \(e_i \in M\) and variable \(x_j \in X\), i.e., \((e_i, x_j) \in A\). Note that the structural model of the FCS system is a just-determined model where all unknown variables can be computed, i.e., the model can be used for system simulation.

A set of faults has been defined for this benchmark [23]. Each fault affects a primarily equation by changing a parameter or a variable, so that the relation between a fault and an equation is unique. Table I summarizes the faults considered in this work\(^3\). Other faults could be easily included in this set, that should be related to other model equations. Another assumption is that only single faults are allowed. This means that two or more faults can not occur in the system at the same time.

There are two compressor faults, \(f_{cp1}\) and \(f_{cp2}\). Fault \(f_{cp1}\) represents an electric fault where the electrical resistance varies (e.g., due to an overheating). Fault \(f_{cp2}\) represents a malfunction of the compressor box. The supply manifold is affected by fault \(f_{sm}\) which represents, for example, a leak. Air cooler and static humidifier faults are represented, respectively, by \(f_{ac}\) and \(f_{sh}\). These two faults are simulated by a change in the setpoints values, \(T_{des}\) and \(\phi_{des}\), meaning that the device is not working properly. Next fault, \(f_{st}\), affects the fuel cell stack. It represents a malfunction in the outlet cathode (e.g., the outlet is partially stuck). Last fault \(f_{om}\) affects the outlet manifold. It could represent either a leak or an outlet obstruction.

TABLE I

<table>
<thead>
<tr>
<th>Fault</th>
<th>Fault description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{cp1})</td>
<td>compressor motor fault</td>
</tr>
<tr>
<td>(f_{cp2})</td>
<td>compressor box fault</td>
</tr>
<tr>
<td>(f_{sm})</td>
<td>supply manifold fault</td>
</tr>
<tr>
<td>(f_{ac})</td>
<td>air cooler fault</td>
</tr>
<tr>
<td>(f_{sh})</td>
<td>static humidifier fault</td>
</tr>
<tr>
<td>(f_{om})</td>
<td>outlet manifold fault</td>
</tr>
<tr>
<td>(f_{st})</td>
<td>stack cathode fault</td>
</tr>
</tbody>
</table>

B. Sensor placement for fault detection and isolation

Installing sensors for measuring any variable is not always possible or it may be difficult. For instance, measuring some internal variables in the fuel cell stack would require inserting probes into the stack which is physically impossible. Other variables like a partial mass in the gas mixture is considered not measurable because a complex measuring equipment is needed and therefore installing such device would not be realistic for practical applications. In all, 30 variables will be assumed to be measurable. The set of candidate sensors and their corresponding cost is depicted in Table II.

Different dimensionless costs have been assigned to each measurable variable according to the ease of installation and the price of its corresponding sensor. For example, note that measuring humidity or vapour in gases has a large cost since the sensors are expensive and difficult to install in the system. On the other hand, installing sensors to measure air temperatures or pressures is easy. Moreover, their measurements are rather reliable. Therefore, this kind of sensors have a smaller cost. Air flow, angular speed and motor torque are assumed to be measurable at an intermediate cost.

If all candidate sensors were installed, the maximum diagnosis performance would be achieved. For this particular application, all faults would be detectable and the isolability index would be maximised \((I(S) = 2 \times (\binom{3}{2}) = 42\)). However the cost of installing all sensors would be \(C(S) = 1594\). Assume that a maximum budget for investment on instrumentation has been set to 32 by the FCS system owner. Hence, the company wants to install a set of sensors such that the maximum budget is no exceeded but the diagnosis performance is maximised. Algorithm 1 has been implemented in Matlab and applied to solve this problem with \(C \leq 32\). After 20.72 seconds, the algorithm returns the following optimal sensor configuration:

\[
S^* = \{i_{cp}, T_{cp, out}, T_{sm, out}, p_{sm, out}, T_{sh, out}, p_{sh, out}, p_{om, out}, p_{ca, out}\}
\]

The cost of this sensor configuration is 27 and the isolability index is 36. This means that this is the lower cost sensor

\(^3\)As already mentioned, a complete description of how these faults are modeled can be found in [23]
configuration that has an isolability index of 36, which is the maximum diagnosis performance that can be achieved under the stated budgetary constraint.

It is clear that there is a trade-off between the budgetary constraint and the best achievable isolability index. In order to illustrate it, Algorithm 1 has been run with different values for C. Figure 3 shows these results. Remark that there exists a sensor configuration with a cost of 114 that has the same isolability index gained by installing all candidate sensors. On the other hand, there does not exist any sensor configuration such that all faults are detectable with a smaller cost than 21. So they are not shown in the figure. It is interesting to note that just a 16% increase in the budget (i.e., from 32 to 37) would lead to an 8% increase in the isolability index (i.e., from 36 to 39). This new optimal sensor configuration would involve just the addition of a sensor measuring w_{cp} to the previous optimal sensor set.

Regarding the search strategy performance issues, with 30 candidate sensors there are more than 10^9 (i.e., 2^{30}) possible sensor configurations. However, applying Algorithm 1 with $C := 32$ just 99 nodes are visited, and thus inspected.

VI. CONCLUSIONS

The sensor placement problem in a complex system has been addressed in this paper. A FCS system involves a high number of equations which involve look-up tables, maps and other nonlinear relations. Such complexity requires the development of suitable tools. The approach provided in this paper addresses it applying a structural analysis framework.

In the literature, most approaches to optimal sensor placement try to solve the following problem: search the minimum cost sensor configuration that satisfies a given set of fault diagnosis specifications. A key contribution of this work is the generalization of this problem by introducing the concept of the isolability index as a measurement of the fault diagnosis performance achievable in a given system. This measurement allows to set up a sensor placement problem based on a fault diagnosis performance maximization under the constraint of a given maximum sensor configuration cost. Thus, the new formulation presented in this paper becomes appropriate in complex systems with a bound in the budget assigned to instrumentation.

In model-based fault diagnosis, diagnosis is basically performed based on the response of residual generators, which are derived from the model equations. When the model includes nonlinearities, deriving a residual generator can become a difficult or even a practically infeasible task. In this paper, the causality framework introduced in [19] has been followed to address it. Thus, the solution obtained from the sensor placement analysis will guarantee a set of easily computable residual generators.

REFERENCES

<table>
<thead>
<tr>
<th>variable</th>
<th>description</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{cp}</td>
<td>compressor angular speed</td>
<td>10</td>
</tr>
<tr>
<td>i_{cp}</td>
<td>compressor motor torque</td>
<td>25</td>
</tr>
<tr>
<td>W_{cp}</td>
<td>compressor exit air mass flow rate</td>
<td>1</td>
</tr>
<tr>
<td>T_{cp}</td>
<td>compressor exit air temperature</td>
<td>40</td>
</tr>
<tr>
<td>$W_{om,out}$</td>
<td>outlet manifold exit air mass flow rate</td>
<td>2</td>
</tr>
<tr>
<td>$T_{om,out}$</td>
<td>outlet manifold exit air temperature</td>
<td>150</td>
</tr>
<tr>
<td>$\phi_{om,out}$</td>
<td>supply manifold exit air relative humidity</td>
<td>40</td>
</tr>
<tr>
<td>$p_{om,out}$</td>
<td>supply manifold exit air pressure</td>
<td>2</td>
</tr>
<tr>
<td>$W_{sc,out}$</td>
<td>air cooler exit air mass flow rate</td>
<td>150</td>
</tr>
<tr>
<td>$T_{sc,out}$</td>
<td>air cooler exit air temperature</td>
<td>4</td>
</tr>
<tr>
<td>$\phi_{sc,out}$</td>
<td>air cooler exit air relative humidity</td>
<td>100</td>
</tr>
<tr>
<td>$W_{inh,out}$</td>
<td>static humidifier exit air mass flow rate</td>
<td>5</td>
</tr>
<tr>
<td>$T_{inh,out}$</td>
<td>static humidifier exit air temperature</td>
<td>150</td>
</tr>
<tr>
<td>$\phi_{inh,out}$</td>
<td>static humidifier exit air relative humidity</td>
<td>5</td>
</tr>
<tr>
<td>$W_{om,out}$</td>
<td>static humidifier injected vapour mass flow rate</td>
<td>40</td>
</tr>
<tr>
<td>$\phi_{om,out}$</td>
<td>outlet manifold exit air relative humidity</td>
<td>150</td>
</tr>
<tr>
<td>$W_{afe,out}$</td>
<td>outlet manifold exit air vapour mass flow rate</td>
<td>100</td>
</tr>
<tr>
<td>$p_{ane,inj}$</td>
<td>FCS anode input hydrogen pressure</td>
<td>4</td>
</tr>
<tr>
<td>$W_{anm,out}$</td>
<td>FCS anode exit hydrogen mass flow rate</td>
<td>40</td>
</tr>
<tr>
<td>$\phi_{anm,out}$</td>
<td>FCS anode exit hydrogen relative humidity</td>
<td>5</td>
</tr>
<tr>
<td>$W_{cae,out}$</td>
<td>FCS cathode exit air mass flow rate</td>
<td>150</td>
</tr>
<tr>
<td>$p_{cae,out}$</td>
<td>FCS cathode exit air pressure</td>
<td>5</td>
</tr>
<tr>
<td>$W_{an,dm,out}$</td>
<td>FCS cathode exit air vapour mass flow rate</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE II
MEASURABLE VARIABLES AND COSTS.

Fig. 3. Fault diagnosis performance tradeoff

