Social Inequality in Iberian Late Prehistory

Edited by

Pedro Díaz-del-Río
Leonardo García Sanjuán

BAR International Series 1525
2006
CHAPTER 6

An appraisal of social inequalities in Central Iberia
(c. 5300-1600 CAL BC)

Pedro Díaz-del-Río
Consejo Superior de Investigaciones Científicas

Abstract

The present paper is an overview of the available evidence for socioeconomic and political inequalities in Central Iberia, from the Neolithic to the Early Bronze Age. It focuses on mortuary practices, labour investments, craft production and settlement organization, disentangling the keys of prehistoric political economy. Following the evidence, I argue that the existence of permanent social inequalities would have been limited by three factors: a limited amount of surplus, the failure of small scale groups to increase the amount of labour force, and most important of all, the absolute absence of means of accumulation of value.

Keywords: Central Iberia; Neolithic; Copper Age; Early Bronze Age; Mortuary Practices; Labor Force; Surplus; Reproduction.

6.1.- Introduction

The aim of this paper is to present a comprehensive state-of-the-art survey of the economic and political nature of social relations in central Iberia during the III and II millennia BC. It highlights both the actual empirical limits to our inquiries, and what we understand as promising future research lines.

Southeastern Iberia has been the main laboratory for debates surrounding prehistoric social inequality since the seventies. The Los Millares and El Argar cultures offered abundant but poorly documented evidence. Processual models shared the optimistic view that the archaeological record contained information on social inequalities sufficient to orient field research programs that would assess their nature (e.g., Gilman & Thornes 1985; Chapman et al 1987). As Chapman (2003: 109-112) points out, fieldwork was not always oriented towards hypothesis testing, and the subsequent qualitative and quantitative increase of chronological, economic and environmental data has not resulted in a consensus over the interpretation (Chapman 2003; Gilman 2001). The political conditions of southeastern Chalcolithic and Bronze Age societies are currently under debate, but scholars can now base their interpretations on evidence that is of reasonable quality.

This has not been the case for Central Iberia. The archaeological record did not offer enough clear evidence of social inequalities to attract processually-oriented scholars (with some remarkable exceptions such as R. Harrison 1977; 1985; 1993; 1994; 1995). Consequently, the construction of culture-historical frameworks remained the main object of archaeological inquiry. Spanish scholars have only recently undertaken the challenge of processual frameworks (Díaz-del-Río 2001; Garrido 2000; Muñoz 2000), and their search for social inequalities has afforded few and ambiguous results.

Throughout this paper I will argue that the existence of permanent social inequalities would have been limited by three key features: a limited amount of surplus, the failure of small scale groups to increase the size of the labour force, and most important of all, the absolute absence of means of accumulating wealth. In order to do so, I will present the archaeological evidence following the standard chronological order, from the Neolithic to the Early Bronze Age, the period known throughout Europe to have the first evidences for permanent social inequalities.
6.2.- Central Iberia

The Spanish Meseta is the largest geographical unit of Iberian Peninsula (Fig. 6.1). Located at the centre of Iberia, it is a 600 m high 181,000 Km² Tertiary plateau, partially surrounded by mountain chains, and divided in two by the mountains of the Central System, running northeast-southwest. With two of the Iberian Peninsula’s main rivers, the Tagus and the Duero, crossing them, the vast plains on either side of the mountains have rich soils with frequent permanent pastures. Highlands are predominantly devoted to pasture and are rich in various raw materials used by prehistoric communities, particularly granite, amphibolite and copper. The interfluvial plateaus and the region of La Mancha to the southeast have dry-farmed lands of low agricultural potential, now put to extensive cereal crops, vines and olives. Both the north and south Mesetas have a continental climate, with dry and hot summers and cold and rainy winters, with a clear difference between the 1170 mm mean rainfall in peripheral highland areas and the 500 mm of the lowland river basins. This paper will focus on the northern Meseta and the central Tagus valley.

6.3.- Neolithic background

Traces of early Neolithic groups (5300-4700 cal BC) went almost unnoticed until the 1990s and are still scarce when compared to later phases of prehistory. Sites are frequently located in river valleys or bluffs, but also in caves. Settlements are defined by the presence of relatively small concentrations of underground features, some including primary burials. As in most western Europe, houses are circular when found. They all share the presence of impressed ware, curated lithic technologies, and occasional bone artefacts. The few published faunal analyses, such as those from the cave of La Vaquera, suggest that the role of domesticates was important only more than half a millennium after the initial presence of pottery in the sequence (Morales & Martín 2003; Morales 2003). This is also the case for cereal pollen, present only by the end of phase II (4600-3600 cal BC), and the minimal amount of cereal remains during the earliest occupation of the cave, especially when compared to subsequent phases (López et al 2003). Free-threshing wheat predominates throughout the sequence at Vaquera, while in the Ambrona valley, the rather poor samples available
Fig. 6.2.- Contrast between the Neolithic habitational site of La Deseada (A) and the flint mine of Casa Montero (B) (following Díaz-del-Río & Consuegra 1999; Consuegra per. com.).

(Stika 1999) support the dominant role of hulled wheat, both einkorn and emmer (Peña-Chocarro in press).

Early Neolithic communities seem to have been very small, with probable short-term year-round settlement patterns, and variable dependence on domestics. Under these conditions, groups would have required permanent cooperative relations in order to maintain their basic reproduction, favoring the rapid spread of the ‘Neolithic package’. Although this package was present in the Meseta by at least 5300 cal BC, the role of domestics varied through time and, most of all, regionally. This variability should be explained before accepting current hypothesis on the rapid colonization of central Iberia by peripheral Neolithic incomers (Kunst & Rojo 1999).

The almost ‘invisible’ settlement evidence contrasts with some recent discoveries, as the flint mine of Casa Montero (Consuegra et al 2004) (Fig. 6.2). Open-area excavations have documented over 4000 vertical shafts, measuring one meter mean wide and depths up to 7 meters. Located by a river bluff, where few and scattered Neolithic finds are known, it seems to be the result of reiterative short-term seasonal expeditions. Not one shaft cuts previous extracting pits, suggesting that the time-span of all mining activity may have been quite short, maybe less than a few centuries. Flint of variable quality was mined and knapped in order to obtain blades and occasionally flakes, products that would be finally transported off-site. All the remaining waste was dumped back into the shafts. This evidence opens promising lines of research. On the one hand, flint-tool production and use is probably the only complete craftwork we can track from procurement to final discard, something almost impossible to assess for other aspects of Neolithic economy. On the other, the study of extraction methods may shed some light on the manner and scale in which labour was mobilized. Considering the size of Neolithic groups, and the resulting population densities, one would again expect cooperative social mechanisms that would both mobilize work-groups and distribute the resulting products. As a matter of fact, any group wanting to exercise a monopoly over flint in the Madrid region would have had to confront the problem of an environment extremely rich in that resource.
The contrast between the scale of settlements, and the cumulative and finally monumental landscape created at the flint mine, can be also tracked when comparing settlements and funerary patterns. Although regionally variable, mounds and megaliths became part of funerary programs some centuries after the earliest Neolithic. Recent reviews (Delibes & Rojo 1997) suggest that monument construction went through at least two subsequent phases. During the last quarter of the fifth millennium cal BC megalithic and non-megalithic mounds were all constructed in such a way that access to the chamber was necessarily performed from the top. Passage graves increased in size and presence throughout the fourth millennium, and by its end, the biggest dolmens were erected.

A similar trend has been suggested for Northwestern galician megaliths (Alonso & Bello 1997). These changes in monument design suggest that the increase in the amount of labour invested (and probably group size involved) ran parallel to the transformation in the way funerary rituals were performed. While smaller groups designed platforms that would have inevitably required staged acts, subsequent builders, probably incorporating more than one group, eventually limited ritual action to those who acceded into the funerary camera through the corridor. The increase in the scale of cooperative labour may have involved the renegotiation of social roles within and between groups.

Nevertheless, it is difficult to assess whether these changes were materialized in a differential treatment of the deceased. Although detailed burial disposal, paleoanthropological, and dietary analysis are scarce, recent research has revealed an aspect previously unknown that may shed some light on the political role of funerary programs: the increasing evidence for burning and ritual capping of charnel houses (Delibes & Etexberria 2002: 50). One such case is La Peña de la Abuela (Rojo et al 2002), a limestone charnel house constructed over a 10 cm platform built with soil that incorporated scattered pottery and lithic remains. These remains suggest some pre-constructive (domestic?) activity, although not necessarily in the immediate area. The interior had defined spaces, with some individualized burials associated with abundant offerings, and a remaining space containing fewer offerings and a mixture of human bones. Anthropological analysis has determined the existence of at least 11 individuals, including 2 children, and possibly equal numbers of adult men and women (Lohrke et al 2002). This pattern has been interpreted as a result of a social segregation of space, where the richest primary burials represent a “noble area” (Rojo et al 2002). An alternative view would suggest that the observed pattern is a characteristic archaeological result of a charnel house mortuary process. The recovered evidence would represent just “a phase in a program of mortuary treatment that included exhumation” (Brown 1995: 16). This of course would limit our expectations with respect to social differentiation (or inequalities) through the direct observation of this kind of burial practices. The physical disposal of the deceased would then be a consequence of the specific moment when the final ritual act was performed. This involved the intense burning, boiling of quicklime through watering, and final capping of the charnel house remains, a mixture of water and fire not uncommon in western European Neolithic (Bradley 2005). Interestingly enough, in other charnel houses as La Sima (Rojo et al 2003), remains were subsequently monumentalized through a megalithic passage grave.

The overall picture suggests that funerary analysis has oversimplified its potential when evaluating social and political relations. Collective funerary rituals may offer one of the keys to understand Neolithic political economy. All in all, funerary patterns suggest the birth of emerging lineages that lacked the required massing effect (Sahlins 1961) to overcome social limitations for the establishment of regional polities. Cyclical involvement in labour investments and ritual performance, mainly but not only in funerary monuments, was one of the mechanisms by which small Neolithic communities assured their reproduction. It may have also been the channel through which tenure and a sense of community beyond individual groups was maintained.

Throughout the subsequent Copper Age communities grew in size, and increased their sedentariness. As in the rest of Iberia, labour investments mainly were transferred to the domestic sphere.

6.4.- The Copper Age (3050-2200 cal BC)

Chalcolithic sites (3050-2200 cal BC) have been defined by random distributions of pit structures. Clusters of hearths, underground storage or other functional domestic facilities are found horizontally distributed in areas up to two or three hectares. Until recent years, scarce evidence of circular wattle and daub dwellings, the absence of deep stratified deposits, and the broad distribution of sites were basic constituted the evidence upon which archaeologists argued for the pastoral semi-nomadic character of Copper Age groups.

Systematic extensive survey programs, like those already completed in the 7995 km² Madrid region, have documented a dense distribution of third millennium BC sites. Although settlement locations are varied (river flood plains, gullies, plateau bluff edges, knolls or hills), sites cluster throughout river basins, the areas with the richest soils and permanent pasture lands. Up to date, no scholar has argued for the existence of a settlement hierarchy, although the evidence suggests an increase in population densities when compared to previous phases.

Research on third millennium BC settlements has challenged commonly subscribed views about the homogeneous structure of all sites. Air photographs have documented the existence of up to 13 ditched enclosures in the northern Meseta (Ariño & Rodriguez 1997; Delibes 2001), all of them occupying fertile soils, while open area
excavations in Madrid region have recovered evidence of
three ditched enclosures ranging from 50 to 100 m in
diameter (Fig. 6.3). Although they are all located in dif-
f erent settings such as river beds, hills and gullies, the
evidence seems to suggest permanent habitation (Díaz-
del-Río 2004a). All three had their ditches filled before
any presence of Bell Beaker artefacts. At any rate, these
villages were not abandoned by the second half of third
millennium. On the contrary, two of them had scattered
presence of Bell Beaker ceramic fragments and the three
of them had Middle BA evidence on top or in the imme-
diate surroundings. In addition to ditch enclosures, a very
few cases of stone walled enclosured settlements are
known, some of them peripheral to the Meseta (e.g., the
village and rock art ‘sanctuary’ of El Pedroso [Delibes et
al. 1995, Bradley 2005: 111]).

Following the lead of other European scholars, some
Portuguese and Spanish archaeologists have suggested a
ritual role for Chalcolithic enclosures (Jorge 1998; 2002;
Delibes 2001). Others have retained a more functionally-
oriented interpretation (Monks 1997; Díaz-del-Río
2004a). Of course, that a reasonable functional interpreta-
tion can be argued for most prehistoric fortifications
(Arkhush & Stanish 2005), does not deny the role of ritual
in or, better said, the possible ritualization of domestic
life (Bradley 2005).

What seems clear when compared to the previous Neo-
lithic is the domesticity of Chalcolithic evidence. Wattle
and daub circular dwellings seem to be the most common
type of buildings, some having stone foundations (Lopez
Plaza 1991; Diaz-del-Rio 2001). Dwellings, with a di-
ameter averaging about 5 m, generally including under-
ground storage facilities, hearth, flint-knapping activities,
and grinding stone tools, suggest a social organization of
labour based on nuclear families. Most artefacts function
to meet domestic needs, and were made, used and dis-
carded in domestic spaces. Large amounts of pottery
fragments are usually found when digging settlements.
They mostly respond to simple spherical or semispherical
non-decorated bowls, with extremely small percentages
of carinated bowls, simple chevron-incised rim decora-
tions and an absolute absence of big storage jars. Al-
though lithic analyses have been frequently focused on
fine flint tools, the most common and distinctive ele-
ments are non-retouched flakes, generally summing more
than 95 percent of stone artefacts. This expedient tech-
nology seems to be a result of the basic need of cutting
edges in domestic activities, and a predominant non-
specialized or standardized industry. Flint resources are
accessible in Tertiary formations, and frequently scattered
along river valleys: they are generally available within
the immediate vicinity of settlements or through down-
the-line exchange mechanisms.

Evidence of small-scale and minimally specialized cop-
ner production is found in residential sites. Although
other objects have been occasionally found, generally in
early, uncontrolled archaeological excavations, awls are
the most frequently recovered object. No more than a
hundred metal artefacts are known scattered throughout
Northern Meseta (Delibes et al. 1999), most of them with-
out any spatial relation to the primary source locations,
situated in surrounding mountains, where granite and
amphibolite are also accessible. All three have different
but permanent presence in domestic contexts from Chal-

This new evidence is more complex than any scholar
would have expected a few years ago. But one may notice
that most of these habitational sites are just as small or
even smaller in dimensions and labour investment than
similar Neolithic and contemporary Chalcolithic sites in
the rest of Europe. Although labour force and earthworks
may be important components in the construction of
monumental landscapes, as well as material expressions
of the appropriation of land and surrounding resources,
their relation to the existence of social inequalities does
not seem to be straightforward. Central Iberian sites, and
in fact most of fortified or enclosured settlements of Ibe-
rian Chalcolithic, can be reasonably explained through
the mobilization of immediate kin-groups. In any case,
the extremely limited scale of labour investments in cen-
tral Iberian sites stands out when compared to other re-
gional developments, such as those documented in Anda-
lusia (Díaz-del-Río 2004b). If the growth of labour force
is a straightforward way to increase production, one
would suggest that central Iberia Copper Age groups
lacked the required surplus to sustain long-term socio-
political inequalities.

Fig. 6.3.- Copper Age ditched enclosures from
Madrid region (following Diaz-del-Rio 2004).
Social Inequality in Iberian Late Prehistory

calolithic to LBA. Some objects provide clear evidence of a dynamical interregional exchange system, but with “essentially local patterns of procurement and distribution” (Harrison & Orozco 2001: 123). The low-frequency but widespread distribution of variscite beads, used from the fourth to the mid-third millennium BC (Blanco et al. 1996; Harrison & Orozco 2001) are found together with granite grinding stones, amphibolite and other ground stones, most of them elements of regular domestic use.

Paleoenvironmental evidence is still scarce. Systematic flotation techniques have not been used frequently, but when applied they show the presence of wheat and barley and various weeds related to abandoned or altered agricultural fields (Díaz-del-Rio et al. 1997). Faunal analysis demonstrate the absolute predominance of domestic species: sheep/goat, cow, and pigs sum up more than 87 percent of total faunal remains. In terms of weight, cows and pigs are especially significant. Sites in northern Meseta, e.g. Las Pozas (3040–2217 cal BC), have strong evidence for evidence of draught cattle as well as butchery patterns related to seasonal consumption of young sheep, probable evidence of feasting activities (Morales 1992; Díaz-del-Rio 2001). Most scholars agree on the existence of all components of the secondary products revolution (Sherratt 1981; Harrison & Moreno 1985). The up to date only trace elemental composition analysis of Chalcolithic burials shows the importance of vegetable sources and a middle/low ingest of animal proteins (Trancho et al. 1996). Overall, palynological regional research programs (López 1997), have shown the existence of an open semi-steppe environment in the surroundings of settlements, usually related to the presence of a socially modified parkland landscape (dehesa) (Stevenson & Harrison 1992).

No regular funerary pattern has been determined (Fabian 1995). Chalcolithic funerary practices involved the reuse of megaliths, construction of small barrows, and use of caves for collective burials. They are mostly secondary burials that include small groups of individuals, frequently representing all genders and ages. Grave deposits, when documented and individually ascribed, are qualitative and quantitatively scarce, generally variscite beads, flint tools and occasional small non-decorated vessels. Single pit graves with primary and secondary burials are only occasionally found in habitation sites, although scattered human bones are not infrequent in settlements. All this suggests the existence of funerary programs that involve primary burials or exposure of dead bodies in the surroundings of settlements, and their final deposition as secondary burials in collective shrines. Although always studied as separate non-related burial practices, they may represent stages in the social life of dead bodies. These secondary burial practices have been traditionally considered a result of egalitarian social relations, because of the apparent simplicity of the final collective and undifferentiated body disposal. The change from collective to the single burial Bell-Beaker funerary program signalled the evolutionary shift from the simple to the complex. But options for negotiating social and political relations are necessarily multiplied in secondary burial processes (Kuijt 2000), and the shift to primary burial practices need not necessarily be interpreted in terms of increasing complexity.

In sum, regional evaluation of first half of III millennium BC shows ubiquitous domestic evidence related to the first unambiguous village settlements. These are small, and probably based on nuclear families. The main social dynamic seems to relate to the increased permanence and territoriality of groups, something that would have contradicted their need for cooperative social mechanisms to assure their reproduction. This dynamic may well be a generalized phenomenon in most early agricultural societies. Differential consumption patterns inside settlements and asymmetrical exchange mechanisms may have been present, but are by no means obvious. Be that as it may, when compared to previous and latter phases, the Copper Age stands out because of its rich evidence for productive activities and labour organization. The limited concentration of labour force, surplus potential, and absolute lack of wealth finance, are all key to understand the conditions of the political economy in which bell-Beaker artefacts appeared.

6.5.- Beakers

Bell Beakers represent the second generalized pan-European phenomena after megalithism, and has been frequently associated with the rise of chiefdoms or bigman societies. As with megalithism, evidence suggests an important degree of temporal and regional variability, especially when incorporating quantitative regional data. In Central Iberia, known to be the origin of the Ciemposuelos style, Bell Beakers have always been a fuzzy ‘phenomenon’. This situation relates to two main features of the traditional pan-European framework: its chronology and its assumed relation to emergent social complexity.

Although Chalcolithic has been traditionally divided into ‘pre-Bell Beaker’ and ‘Bell Beaker’ phases, actual radiocarbon dates and contextual studies show the existence of Beaker artefacts both in Chalcolithic (2700–2200 cal BC) and early Bronze Age contexts (2250–1630 cal BC). In fact, some of the richest Beaker burials, e.g., Fuente Olmedo (2200–1880 cal BC), may be contemporaneous to the latter. As a result, and with a probable time span of 1000 years (2700–1700 cal BC), the traditional ascription of bell-Beaker style to a Chalcolithic ‘culture’ or ‘phase’ has not helped to clarify patterns of social change. Beaker pottery fragments are extremely scarce in habitation sites. They always constitute less than 5% of total pottery fragments. Surprisingly enough, this highly patchy presence of Beaker assemblages has been frequently accepted as the earliest evidence of big-men or chiefdom societies in central Iberia. The argument is
mainly based on funerary evidence, by emphasizing some exceptionally ‘rich’ individual burials (Delibes et al. 1999; Blasco et al. 1998). But this evidence is also extremely patchy. The fact that such variability has not been taken in account seems evident when revisiting El Ventorro, a site known since the seventies (Harrison et al. 1975; Priego & Quero 1992). Contrary to the general low percentage of Bell Beakers in domestic contexts, El Ventorro has the highest accumulation of Chalcolithic ‘garbage’ per square meter of the whole Meseta (Díaz-del-Río 2001). Pithouse 013 (Priego & Quero 1992), a 44 square meter feature, contained an impressive collection of artefacts: 33595 ceramic fragments, 106 of them bell-Beakers, 2792 flint items, 3283 faunal remains with an important percentage of juvenile-adult pig consumption (Morales & Villegas 1994), 41 bone artefacts, 24 granite grinding stones, 7 ground stone tools, and sporadic human bones. An important amount of copper smelting refuse was also recovered. The exceptionality of this midden stands out when compared to other contemporary sites. It is the first outstanding evidence for differential accumulation of refuse recovered in a so-called dwelling. The evidence is not unambiguous though. Stratigraphic relations, concentration and disposition of artefacts, lack of structural features, and a windstopper associated to a hearth seems to suggest that the feature may not have been a building, but an open-air structure. I have recently interpreted it as a communal or supracommunal feasting area, maybe related to corporate groups (Díaz-del-Río 2001). The material results of feasting activities are also ambiguous by nature, but if I understand the evidence from this midden correctly, it suggests that by the end of the third millennium BC groups were occasionally consuming surplus collectively. Competitive or not, these kind of collective feasting would display the arena for the negotiation of social roles beyond the individual groups.

Extreme variability is also evident when evaluating funerary patterns. Individuals were buried in previously built megaliths, in small mounds, caves, or individual pit graves. Seventy six funerary sites are known for the Me-
seta, but only 18 are considered to have a “complete” Beaker set (Garrido 2000: 61). Out of these, the amount of burial goods range from a Beaker and a bowl to the unique Fuente Olmedo single burial, with a complete ceramic set (beaker, bowl and cazuela) and 18 metal objects, including a golden diadem. All the evidence suggests a limited capacity to accumulate wealth, although occasionally some outstanding burials did occur.

We may not be able to assess general standardization patterns in Beaker production. Statistical analysis of Beaker variability at local and regional scales may increase our knowledge of how Beaker artefacts were produced and eventually distributed. Artisans did share certain skills, aesthetic templates, and practical knowledge, but their production does not seem to be standardized. Of course, the multiplicity of production events and the extended time span of over which these occur frequently blur standardization signatures (Blackman et al 1993). When compared at a regional scale, coefficients of variation (CV) (Fig. 6.6) for all types of Beaker pottery heights and rim diameters are always higher than 15%. The only exception is the clearly standardized cazuela set from the burials at Ciempozuelos itself, which are nevertheless decorated following differentiated patterns. They were deposited in four single burials, probably two females (one young and one adult), a senile male with a double trepanation (Liesau & Pastor 2003), and an undetermined senile individual (Sampedro & Liesau 1998). The set suggests the work of a single artisan and the contemporaneity of the four burials, which may have been of kin-related individuals. If so, they may indicate that certain families or individuals obtained a differentiated status in life and thus a specific treatment when buried. Hosting of collective actions as those documented at El Ventorro could have been the means by which they acceded to higher status. But it is unclear if these individuals had the means to subordinate others outside the local group, as to assure the inheritance of their position in the long term. The rarity of Beaker burials over the millennium in which they occurred, and their great variability in wealth suggests otherwise.

The actual archaeological record does not support the understanding of Bell Beaker assemblage as evidence of the first central Iberian chiefdoms. Settlement evidence is still too scarce to evaluate the role of these items in the domestic sphere, and changes from previous domestic patterns are not obvious except for some unique sites as El Ventorro. Funerary programs show minimal labour investment in graves and highly variable deposition of artefacts, some of them known to be involved in domestic production and consumption. Only metal objects as Palmela arrowheads, axes and daggers, all particularly associated with burials, seem to display a minimally materialized power (De Marrais et al 1996).

The long time span of Bell Beakers threatens any one-meaning explanation. A reasonable perspective should accept that the Bell Beaker phenomenon in central Iberia is made possible through a process of capital intensification developed throughout the first half of third millennium BC. All evidence seem to support the occasional presence of leaders with acquired status, who probably manipulated social relations in order to obtain small-scale and irregular prestige benefits. It would not seem that
such leaders were capable of exercising or expanding their social position beyond the local group.

The limited evidence for wealth or prestige items disappears in the subsequent Bronze Age. Domesticity, and the critical need to maintain the reproduction of small-scale groups, becomes the main feature of the archaeological record.

6.6.- The Early Bronze Age (2250-1630 cal BC)

The Early or ‘Classic’ Bronze Age in central Iberia (2250-1630 cal BC) contrasts with other areas of the Peninsula because of its lack of monumentality and the scarce evidence for social differentiation in burial practices. Sites are basically defined by the broad distributions of pit structures, frequently interpreted as underground storage and other domestic facilities. These appear in clusters of less than 1 to 2 hectares, occupying similar topographical positions as previous Copper Age settlements. Labour is no longer deployed in the construction of enclosures. Sites tend to look alike, and scholars have frequently accepted the lack of clear discernible differentiation between them.

However, site variability does exist. This has been recently tested by analyzing the variance of pit volume, frequency of pottery and lithic refuse from four EBA sites in close proximity to one another (Díaz-del-Río & Vicent in press) (Fig. 6.4). Results show that, aside from chronological differences, functional diversification may be at work. Extensive use of landscape by small-scale groups in a semisteppe environment would explain the observed pattern, but intrasite asymmetries in for example the distribution of storage capacity cannot be assessed at present. Harrison (1985; 1993; 1994) has stressed the importance of mobile pastoralism as the means of production when interpreting central Iberian social dynamics. This is, of course, because in a relatively stable agricultural community, “raising animals is also the major way of converting surplus agricultural crops into [...] social and economic currencies” (Hayden, 2001: 577). Unfortunately, most central Iberian Bronze Age sites yield few faunal remains.

Changes in craftwork production suggest a sedentary lifestyle. Pottery types include for the first time in prehistory large (and often decorated) storage jars. The most evident transition to EBA happens to be observed through lithic tools, with a general simplification of flint industries and the predominance of serrated flint sickle teeth (Harrison, 1995: 69). This reduction in both the typological variety and quantity of flint production has been frequently considered as a result of the shift to metal tools. Nevertheless, copper and occasional bronze objects are infrequent and do not seem to substitute the function of previous stone industries.

Materialization of wealth is generally associated with the presence of durable objects, as for example metalwork. In Central Iberia, the amount of metallurgy is minimal when compared to its contemporary Southeast (Montero, 1994; 1998) (Fig. 6.7). Scarce metal ornaments are known in the Meseta during Chalcolithic and EBA, something that contrasts with the dramatic inversion of metal production during the Millares-Argar transition. Copper production was a domestic semi-specialized activity, as the generalized distribution of smelting pots in settlements seem to demonstrate. With a simple technology that demanded no specialist craftsmen, scholars stress the unfeasibility of a specific metallurgical development associated to a new set of social relations (Rovira and Montero 1994). Although metal objects may have occasionally acted as status symbols, their role in the creation of exchange webs or alliance formation seems difficult to support.

A relevant aspect of the EBA archaeological record is the presence of human burials in almost all settlements. The most frequent pattern is the flexed fetal deposition inside underground storage pits, occasionally accompanied by complete or partial domestic animal offerings (Fig. 6.5).
6.7.- Concluding remarks

Throughout the last ten years scholars have disagreed on the nature of prehistoric social relations in Central Iberia. Some have considered the existence of chiefdoms, especially during the bell-Beaker phenomenon, but their arguments should confront an undeniable lack of evidence to support their claims. Others have considered them to be transegalitarian (Garrido, in this volume). Clark and Blake (1994) and Hayden (1995; 2001) have used this term to define societies “with private ownership of resources and produce, low levels of sharing, and institutionalized hierarchies based ultimately on wealth (but also including ritual, kinship, and political dominance) [that are also] characterized by the production and transformation of food surpluses, economically based competition, the use of prestige goods, and a range of specific feasting patterns” (Hayden 2001: 232). If I understand Hayden’s definition correctly, the presence of unequal distribution of a significant amount of wealth is the key feature to recognize ‘transegalitarianism’, and up to date, this kind of evidence is mostly lacking in the discussed area. Of course, the definition is flexible enough to include a wide range of archaeological variability (Natufian, American Northwest Coast, Levant PPBN, Western European megalithic cultures, etc), and the generalization of such labeling may not always help us to understand the specific nature of social, economic, and/or political inequalities.

Finally, I have defended the existence of a kin-based mode of social organization (following Wolf 1982), with few evidences for social inequality, and a strong capacity to regenerate itself, limiting the options of potential leaders to transmit their power at their will (Díaz-del-Río 2001: 317). This has been wrongly interpreted as a statement favouring the existence of an egalitarian society (e.g. Garrido, in this volume), and thus requires some clarification.

Vicent (1995: 178) has stressed two limiting factors for socio-political change in prehistoric Iberia: “the resistance against the logic of accumulation of wealth and power by means of intra-community exploitation, and the absence of a means of accumulation of value due to the absolute predominance of use value”. Both factors were at work in central Iberian Prehistory. The structural limits of any long-term political change were constrained by a modest surplus production, mostly oriented to assure the reproduction of small-scale groups, the failure to enforce socioeconomic or ideological mechanisms needed to increase the amount of labour force and, overall, no long term means of accumulation of value. Under these conditions, I see no way in which potential leaders could have perpetuated their power.

In order to refine the observed socioeconomic dynamics we will need to recover more and better data, oriented to increase our knowledge of both the productive and reproductive activities of these groups. Contrary to what was previously assumed, Central Iberian prehistoric groups did leave a rich and variable archaeological record, one that allows multiple lines of inquiry. One just has to pose good questions. And expect challenging answers.

Acknowledgements: This research has been funded by the Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad del Madrid, Project title: “Paisajes Prehistóricos en la cuenca media del Jarama: indicadores tecnocoeconómicos y ambientales a escala semimicro-local” Ref. nº 06/0081/2003. I am specially grateful to Antonio Gilman for his editing and comments on the draft. I am also in debt with my good friends Susana Consuegra, Tim Earle, Maribel Martínez.
Navarrete and Juan M. Vicent for their comments on previous drafts, and for their permanent support.

6.8. - References


MONROS, A. & MARTÍN, S. 2003: “Informe zooarqueológi-


AN APPRAISAL OF SOCIAL INEQUALITIES IN CENTRAL IBERIA (c. 5300-1600 CAL BC)


