XL CURSO INTERNACIONAL DE EDAFOLOGÍA Y BIOLOGÍA VEGETAL

ESTUDIO DE LIBERACIÓN CONTROLADA DEL HERBICIDA ALACLOR EN SUELO Y AGUA MEDIANTE LA ELABORACIÓN DE MICROESFERAS DE ETILCELULOSA

Memoria presentada por Alegría Cabrera Mesa.
Sevilla, julio de 2003
Memoria presentada por Alegría Cabrera Mesa, correspondiente al trabajo de investigación desarrollado durante el XL Curso Internacional de Edafología y Biología Vegetal en el Departamento de Química de Interfases en Procesos Medioambientales.

Fdo.: Alegría Cabrera Mesa

V°B° Las Directoras del Trabajo de Investigación

Fdo.: Morillo González, Esmeralda
Fdo.: Maqueda Porras, Celia
INDICE

1.- OBJETIVOS ... 1

2.- INTRODUCCIÓN .. 3

2.1.- COMPOSICIÓN DE LA FRACCIÓN COLOIDAL DEL SUELO 3
 2.1.1.- Componentes orgánicos ... 3
 2.1.2.- Silicatos laminares o minerales de la arcilla 5
 2.1.3.- Óxidos y oxihidróxidos ... 6

2.2.- PLAGUICIDAS ... 7
 2.2.1.- Antecedentes históricos ... 7
 2.2.2.- Clasificación .. 8
 2.2.3.- Herbicidas ... 8

2.3.- INTERACCIÓN DE PLAGUICIDAS CON SUELOS 10
 2.3.1.- Origen de los plaguicidas en el suelo ... 10
 2.3.2.- Evolución de los plaguicidas en el suelo 11
 2.3.3.- Adsorción-desorción de plaguicidas en el suelo 14
 2.3.4.- Movilidad de plaguicidas en suelos ... 16

2.4.- LIBERACIÓN CONTROLADA DE PLAGUICIDAS 17
3.- MATERIALES Y MÉTODOS ... 24

3.1.- MATERIALES ... 24
 3.1.1.- Plaguicida ... 24
 3.1.2.- Polímero de celulosa ... 25
 3.1.3.- Suelo .. 26

3.2.- MÉTODOS .. 26
 3.2.1.- Determinaciones analíticas ... 26
 3.2.1.1.- Determinación del plaguicida alaclor 26
 3.2.1.2.- Determinaciones analíticas para la caracterización del suelo .. 26
 3.2.2.- Técnica de elaboración de microesferas 30
 3.2.3.- Caracterización morfológica de las microesferas 31
 3.2.4.- Determinación del rendimiento de producción, carga de plaguicida y eficacia de encapsulación .. 32
 3.2.5.- Tamización de las microesferas ... 32
 3.2.6.- Estudios de liberación ... 32
 3.2.7.- Movilidad en columnas de suelo ... 33

4.- RESULTADOS Y DISCUSIÓN ... 34

4.1.- CARACTERIZACIÓN DE MICROESFERAS 34
 4.1.1.- Influencia de la relación alaclor/etilcelulosa 35
 4.1.2.- Influencia del contenido en PVA ... 39
 4.1.3.- Influencia de la adición de polietilenglicol 4000 42
4.1.4.- Influencia de la velocidad de agitación .. 43

4.2.- CARACTERIZACIÓN FÍSICO-QUÍMICA DEL SUELO 47
4.3.- ESTUDIOS DE MOVILIDAD EN COLUMNAS DE SUELO 48

5.- CONCLUSIONES .. 54

6.- BIBLIOGRAFÍA .. 56
OBJETIVOS
1.- OBJETIVOS

Debido al aumento demográfico a escala mundial, en los últimos años se ha tendido hacia una agricultura productivista, ya que las plantas constituyen la principal fuente de alimentos en el mundo. Por este motivo se ha trabajado intensamente en la mejora genética, la integración de los sistemas de riego y fertilizantes y la mayor eficacia de los plaguicidas.

El uso de plaguicidas es totalmente imprescindible, pues las plantas son susceptibles de sufrir aproximadamente unas 100.000 enfermedades, causadas por agentes muy variados. Se estima que una tercera parte de los cultivos son devastados por estas plagas. Sin embargo, el uso indebido de plaguicidas tiene efectos negativos.

La aplicación de plaguicidas orgánicos al suelo constituye un motivo de preocupación, ya que se comportan como sustancias contaminantes, pues es necesario el uso de cantidades masivas de los mismos para la obtención de buenas cosechas, pero, a su vez, provocan problemas de contaminación ambiental con graves riesgos tanto para la especie humana, como para los ecosistemas naturales. Los plaguicidas se aplican en dosis muy altas, y posiblemente tóxicas, que frecuentemente decrecen en el campo hasta concentraciones por debajo de su nivel de efectividad mínimo. Como consecuencia, se necesita volver a aplicar repetidas veces el plaguicida para poder mantener controlada una plaga.

Cuando los herbicidas alcanzan la superficie del suelo, pueden sufrir una serie de procesos tales como degradación química y/o biológica, fotodescomposición, volatilización, absorción por las plantas y adsorción a los coloides del suelo. También pueden producirse pérdidas por escorrentías, y lixiviación a lo largo del perfil del suelo. Esto último puede producir tres efectos: (i) aumento de la actividad residual del herbicida ya que la actividad microbiana responsable de la degradación de la mayoría de los herbicidas decrece con la profundidad; (ii) reducción de la concentración del herbicida en la parte superior del suelo por debajo de los umbrales necesarios para el control de las malas hierbas, y acumulación sucesiva en la zona raíz del cultivo a niveles que peligre la seguridad del mismo; (iii) el agua que se infiltra en el suelo puede transportar herbicidas a través y por debajo de la zona raíz, pudiendo alcanzar y contaminar aguas subterráneas.
Muchos de los problemas de contaminación que provocan los plaguicidas pueden reducirse utilizando formulaciones que protegen al ingrediente activo, de forma que su liberación se produce de una manera controlada.

La concentración de plaguicida en el medio suelo-planta-agua se encuentra gobernada por el grado de liberación del plaguicida, que depende de las propiedades del plaguicida en cuestión y de la formulación que se utilice, que condicionan las pérdidas del mismo, por degradación, percolación, volatilización y adsorción sobre los elementos constituyentes del suelo.

En los últimos años, las formulaciones de liberación controlada han adquirido gran importancia en la industria de los plaguicidas, debido a las numerosas ventajas que aportan, como son la reducción de la toxicidad del plaguicida y la minimización de su impacto medioambiental al reducir la evaporación y la percolación del mismo. Además el recubrimiento protege a los plaguicidas de las influencias medioambientales, reduciéndose las pérdidas por degradación fotolítica, química y microbiológica, por lo que es necesario aplicar menos cantidad de materia activa para conseguir la eficacia deseada, y ello conlleva una reducción en los niveles de plaguicidas en el medioambiente. Por otra parte, se ha comprobado que las formulaciones de liberación controlada pueden aumentar la selectividad del plaguicida y también pueden reducir las incompatibilidades físicas que surgen cuando se usan mezclas de plaguicidas.

Los objetivos del presente trabajo son:

- Elaboración de microesferas, como sistemas de liberación controlada del herbicida alaclor, modificando las proporciones de los componentes de la formulación, cambiando las variables de preparación de las mismas y añadiendo o no agentes que favorecen la formación de las microesferas o de poros superficiales.

- Estudios de caracterización de las microesferas elaboradas, empleando técnicas de microscopía electrónica de barrido, ensayos de velocidad de disolución y tamización.

- Estudios de movilidad de alaclor en columnas de un suelo, que será previamente caracterizado en cuanto a sus componentes y propiedades físico-químicas, aplicando el herbicida en solución e incluido en microesferas.
INTRODUCCIÓN
2. INTRODUCCIÓN

2.1. COMPOSICIÓN DE LA FRACCIÓN COLOIDAL DEL SUELO

La fracción activa o fracción coloidal del suelo es la formada por las partículas de diámetro inferior a 2 micras, desde un punto de vista textural. Esta fracción es la que determina fundamentalmente las propiedades físicas y químicas de los suelos, ya que por tratarse de partículas de pequeño tamaño poseen una alta superficie o alta reactividad superficial, siendo la parte dominante en las interacciones entre moléculas de plaguicidas y el suelo.

Las reacciones en interfase sólido-líquido en los suelos son las responsables de muchos de los procesos que se dan en dicho medio. Estas reacciones, en gran parte, regulan o limitan la movilidad de nutrientes, de contaminantes y, en general, de cualquier especie química que esté presente en los suelos de forma más o menos soluble.

Los componentes coloidales se dividen en:
- Orgánicos: compuestos por sustancias húmicas y no húmicas.
- Inorgánicos: compuestos principalmente por silicatos laminares o minerales de la arcilla y por óxidos y oxihidróxidos de Fe, Al, Mn y Ti, fundamentalmente.

De estos componentes coloidales del suelo, el conocimiento que se tiene de las estructuras de los coloides orgánicos está muy limitado, sobre todo de las sustancias húmicas, debido a su complejidad y heterogeneidad. Sin embargo, los coloides inorgánicos son los que presentan unas estructuras más conocidas, pues éstas son más o menos definidas y continuas, pudiéndose estudiar mediante el empleo de técnicas analíticas modernas.

2.1.1. Componentes orgánicos

La materia orgánica es muy importante en los procesos de adsorción, si bien su contenido en los suelos, especialmente en los agrícolas, es menor que el de los compuestos inorgánicos. Los coloides orgánicos juegan un papel fundamental en el caso
de los contaminantes orgánicos poco solubles en agua o hidrófobos, de tal forma que muchas veces la retención de plaguicidas u otros compuestos orgánicos se refiere al contenido en materia orgánica \((K_m) \) de los suelos. Los materiales orgánicos de los suelos tienen en general una capacidad de adsorción más grande que los minerales, sin embargo diversos factores influyen y modifican dicha capacidad una vez que se considera el suelo como un conjunto de diversos constituyentes (Calvet, 1980).

Los componentes orgánicos de la fracción coloidal del suelo pueden clasificarse en dos categorías:

a) Sustancias no húmicas: constituídas por macromoléculas orgánicas cuya estructura química y constitución están relativamente bien caracterizadas, tales como enzimas, ácidos nucleicos, polisacáridos, proteínas, lípidos, pigmentos, resinas, ligninas y taninos, junto con una amplia variedad de compuestos específicos. En general tienen bajo peso molecular y constituyen un material de transición para la formación de las sustancias húmicas, ya que, en general, se descomponen y metabolizan con rapidez. Son empleados como sustratos por los microorganismos y presentan una naturaleza transitoria.

b) Sustancias húmicas: son productos más o menos alterados, de color oscuro, naturaleza lignoproteica, carácter ácido, polidisperso de peso molecular relativamente alto, químicamente complejos y de propiedades no bien definidas, siendo un material estable. Son los materiales orgánicos del suelo con mayor contenido en carbono (Bohn, 1976). Se pueden dividir en tres grupos según su solubilidad a diferentes valores de pH: ácidos húmicos, solubles en álcalis; ácidos fúlvicos, solubles en álcalis y ácidos; y huminas, insolubles en álcalis y en ácidos. Estas tres fracciones húmicas son similares unas a otras, pero difieren en sus pesos moleculares y contenido en grupos funcionales, siendo los ácidos fúlvicos los de menor peso molecular pero mayor contenido en grupos funcionales oxigenados que las otras dos fracciones. Las características más importantes que tienen todas las fracciones húmicas son: resistencia a la degradación microbiana, facilidad para formar sales estables solubles e insolubles en agua, así como complejos con iones metálicos y óxidos, interacciones con minerales de la arcilla y compuestos orgánicos. Como consecuencia de estas características en general las sustancias húmicas:

- Aumentan la fertilidad de los suelos.

Introducción
- Aumentan la capacidad calorífica del suelo, disminuyendo su conductividad térmica (absorben hasta un 80% de la radiación solar).
- Conservan la estructura del suelo, debido a su naturaleza coloidal, a la unión mediante cationes como Ca, Mg, Fe y Al y al aumento de la actividad microbiana.
- Presentan elevada capacidad de retención de agua.
- Mejoran la permeabilidad del suelo a gases y agua, debido al aumento de la porosidad.
- Aumentan la Capacidad de Intercambio Catiónico y el poder tampón del suelo.
- Promueven la actividad rizogénica y la capacidad de absorción de nutrientes al elevar la permeabilidad de la membrana celular.
- Favorece la germinación de las semillas.
- Contrarresta el efecto de algunas toxinas.
- Todo esto hace que se cree un ambiente más favorable para el desarrollo de las plantas, facilitando el transporte de elementos nutritivos disponibles, especialmente metales traza.

2.1.2.- Silicatos laminares o minerales de la arcilla

Junto con la materia orgánica del suelo, los silicatos son los componentes más importantes de la fracción arcilla desde el punto de vista de la adsorción, tanto por su abundancia en los suelos, como por presentar altos valores de superficie específica y capacidad de cambio, así como por poseer en su mayoría una apreciable superficie interna, que en algunos casos, es accesible a moléculas orgánicas de gran tamaño (Theng, 1974; Raussell-Colom y Serratosa, 1987).

Están formados por un grupo muy amplio de minerales de dimensiones de celda unidad muy parecida. La red atómica de los silicatos laminares o minerales de la arcilla está formada por una unidad estructural compuesta por tetraedros de SiO₄, que comparten sus vértices, y otra constituida por dos planos de oxígeno o hidroxilos entre los que hay iones Al³⁺, Fe³⁺, Mg²⁺, etc., se encuentran ocupando intersticios en coordinación octaédrica. Los distintos silicatos difieren en la naturaleza, disposición y
modo en cómo se ordenan ambos tipos de unidades estructurales en la lámina elemental. La disposición de las capas puede realizarse de las siguientes formas:

a) En proporción 1:1, dando lugar a los minerales de la arcilla de fórmula general $M_2\cdot 3 Si_2O_5(OH)_4$ llamados de tipo 1:1. Podemos citar los subgrupos de la caolinita y de la serpentina.

b) En proporción 2:1, estando la capa de octaedros situada entre dos de tetraedros y de fórmula general $M_2\cdot 3 Si_4O_{10}(OH)_2$ siendo estos minerales del tipo 2:1. Pertenecen a este tipo las esmectitas dioctaédricas, la montmorillonita y la vermiculita, por ejemplo.

c) En proporción 2:1:1, de forma que se unen cuatro capas, resultando un mineral en el que unidades del tipo 2:1 alternan con planos $M(OH)_{2\cdot 3}$ en el que los $M^{2\cdot}$ o $M^{3\cdot}$ están coordinados octaédricamente.

En estas estructuras se pueden dar sustituciones isomórficas del $Si^{4\cdot}$ y/o del $M^{2\cdot/3\cdot}$ por cationes de tamaño similar, pero de carga generalmente más baja. Según el número de cationes sustituidos resultarán minerales de carga superficial diferente. Esta deficiencia de carga positiva puede ser equilibrada mediante la incorporación de cationes, sean o no cambiables.

2.1.3.- Óxidos y oxihidróxidos

También presentan gran reactividad superficial. Constituidos por unidades $MX_6^{m\cdot 6\cdot}$, siendo $M^{m\cdot}$ un catión metálico que está rodeado por 6 aniones $X^{b\cdot}$. Los óxidos y oxihidróxidos son mucho más abundantes en los suelos de lo que se ha venido aceptando hasta ahora, debido a que se pueden encontrar formando películas sobre otros componentes, como silicatos laminares y carbonatos, y su presencia no se puede limitar únicamente a los suelos de carga variable (Fordham y Norrish, 1979).

Los óxidos de aluminio, hierro y manganeso son los más importantes, debido a su gran importancia en la litosfera y a su baja solubilidad en el intervalo normal de pH del suelo.

Estos óxidos y oxihidróxidos pueden, a diferencia de los silicatos laminares, sintetizarse en el laboratorio en condiciones semejantes a las de su formación en el...
suelo, por lo que el estudio de estos modelos sintéticos ha contribuido al conocimiento actual de su papel en los suelos.

Al ser la superficie de los componentes del suelo una terminación brusca de la ordenación interna del cristal, la exposición de óxidos o partículas de óxido hidratado al vapor de agua generalmente da lugar a una adsorción física o química del agua sobre la superficie, y por tanto, la carga sobre las superficies hidroxiladas pueden desarrollarse a través de la disociación anfótera de los grupos hidroxilos superficiales, o por adsorción de H⁺ u OH⁻ según el esquema siguiente:

\[
\begin{align*}
\text{MOH} & \quad \leftrightarrow \quad \text{MO}^+ + \text{H}^+ (\text{aq.}) \\
\text{MOH} & \quad \leftrightarrow \quad \text{M}^+ + \text{OH}^- (\text{aq.}) \\
\text{M}^+\text{H}_2\text{O} & \quad \leftrightarrow \quad \text{MOH}_2^+ \\
\text{MOH} + \text{H}_2\text{O} & \quad \leftrightarrow \quad \text{MOH}_2^+ + \text{OH}^- (\text{aq.})
\end{align*}
\]

Tanto la concentración de iones determinantes del potencial como la carga superficial neta son dependientes del pH. Al valor de pH en el que la carga superficial neta es cero, se le denomina punto cero de carga (PCZ).

2.2.- PLAGUICIDAS

2.2.1.- Antecedentes históricos

El uso de plaguicidas es reciente, se comienzan a utilizar a principios del siglo XIX.

Se distinguen tres fases en su desarrollo histórico:

1ª: Descubrimiento accidental o experimental de la acción plaguicida de algunos compuestos, como el azufre, arseniatos, sulfato de cobre, etc.

2ª: En Holanda se introduce el uso de los aceites insecticidas y se descubre la acción insecticida del pelitre y la rotenona.
3º: Descubrimiento de las propiedades insecticidas del DDT, realizado por Müller en 1940. Se suceden con rapidez los descubrimientos de nuevos plaguicidas y se desarrollan las bases científicas de investigaciones posteriores.

2.2.2.- Clasificación

Los plaguicidas pueden clasificarse según su uso en: insecticidas, acaricidas, fungicidas, antibióticos, herbicidas y rodenticidas. También se han de considerar los atrayentes, repelentes y esterilizantes de insectos.

2.2.3.- Herbicidas

Son aquellas sustancias capaces de controlar las malas hierbas que compiten en el desarrollo de los cultivos de importancia comercial.

La disminución de la producción originada por el desarrollo de malas hierbas se cifra en un 15-20% del valor total de los cultivos de las zonas templadas y en un 25-50% del valor de los cultivos de las zonas tropicales, debiéndose principalmente a la competencia de las hierbas con las plantas útiles por el consumo de elementos nutritivos, agua y luz. Además las malas hierbas suelen reducir la calidad de las cosechas. Algunas hierbas son venenosas y otras producen alergia.

Por todo ello, el uso de herbicidas se ha impuesto como una de las operaciones más necesarias para conseguir cosechas estables de alto rendimiento y para mantener despejados los linderos de las vías férreas, las zonas bajo tendidos eléctricos, etc.

Los herbicidas utilizados actualmente deben su aceptación a su selectividad, que les permite destruir hierbas sin afectar a los cultivos, y a su gran eficacia, que permite utilizar dosis muy pequeñas, con las cuales la aplicación resulta más económica.

Los herbicidas se clasifican a su vez, según en los métodos utilizados para su aplicación y según su estructura química.

Dentro de los métodos utilizados para su aplicación se dividen según su selectividad en tratamientos no selectivos o totales, que son aquellos dirigidos a destruir toda la vegetación presente en la zona de aplicación y en tratamientos selectivos, cuyo...
Estudio de liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

objetivo es destruir las malas hierbas presente en los cultivos, sin afectar a las plantas que nos interesan.

Según la superficie de suelo tratada encontramos herbicidas de aplicaciones totales que se aplican sobre la superficie a tratar. En caso de tratamiento demasiado caros y que las plantas cultivadas se encuentren en líneas suficientemente distanciadas, el herbicida se puede aplicar sólo sobre las bandas en que se siembra el cultivo. Otro caso es el de aplicación dirigida, cuando se trata de cultivos de porte elevado y están dispuestos en líneas separadas, es posible aplicar el herbicida mediante pulverización a las hierbas o al suelo.

El modo de aplicación del herbicida puede ser por vía foliar o a través del suelo. Por vía foliar a su vez se subdivide en herbicida de contacto, que son aquellos que sólo afectan a la parte de la planta con la cual entran en contacto y en herbicidas de traslocación o sistémicos que ejercen su acción en los lugares críticos de la planta, que puede ser más o menos distante de la zona de aplicación. Los herbicidas que se aplican a través del suelo o también llamados residuales, actúan por contacto con las raíces y por traslocación, una vez que el herbicida ha penetrado en la planta, se traslada hasta los puntos en los que tiene lugar su acción tóxica.

Estos productos, como permanecen en el suelo durante periodos más o menos largos de tiempo, tienen un efecto residual sobre las hierbas que germinan en dicho periodo.

Según la época de aplicación de los herbicidas, éstos pueden ser de presiembra o pretrasplante cuando el tratamiento se realiza antes de la siembra o trasplante del cultivo, de preemergencia, en caso de que el herbicida se aplica después de sembrar la cosecha y antes de su germinación, o bien de postemergencia cuando se aplican después de la germinación del cultivo.

La clasificación de los herbicidas según su estructura química es la siguiente:

Fenoxiácidos y derivados, como 2,4-D, MCPA.

Carbamatos, como IPC, C1IPC.

Acidos alifáticos clorados y sus sales, como TCA, dalapón.

Acidos aromáticos halogenados, como ácido-2,3,6-triclorobenzoico, ioxinil, bromoxinil

Introducción
Ureas sustituidas, como diurón, linurón, fenurón, monurón.

Cloroacetamidas sustituidas, como CDEA, Randox.

Anilidas sustituidas, como propanilo, dicril.

Triazinas herbicidas, como simazina, atrazina.

Diazinas, como piridazina, tiadiazina, bromacilo.

Otros compuestos.

2.3.- INTERACCIÓN DE PLAGUICIDAS CON SUELOS

Las interacciones que tienen lugar entre las moléculas del plaguicida y las fracciones coloidales del suelo están influenciadas considerablemente por la humedad, temperatura, pH, contenido en minerales y contenido en materia orgánica del suelo. A su vez, también están relacionadas con las características de los plaguicidas orgánicos en cuanto a solubilidad en agua, polaridad, tamaño molecular y características químicas. De acuerdo con esto, el grado de adsorción de un plaguicida por el suelo depende de la naturaleza de la fracción coloidal y de la estructura química del compuesto.

En general, los plaguicidas son compuestos orgánicos con propiedades tóxicas. Por eso es necesario saber qué tipo de interacción existe entre estos compuestos y los suelos, así como con sus constituyentes.

2.3.1.- Origen de los plaguicidas en el suelo

A veces es debido a los tratamientos que se efectúan directamente sobre las partes aéreas de las plantas para combatir sus plagas, donde aproximadamente un 50% del producto utilizado se deposita en el suelo; o bien, por arrastre a la planta por acción de la lluvia o del viento. Este es el caso que normalmente se presenta en la aplicación de insecticidas, fungicidas y herbicidas.

Otras veces el tratamiento se hace directamente al suelo, como en la aplicación de nematicidas y algunos herbicidas, apareciendo el producto en cantidades mayores.
Estudio de liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilecelulosa

En menor proporción, pueden también proceder de restos vegetales diversos que quedan en el suelo al recolectar el cultivo, o desprendidos durante el tratamiento.

También hay que considerar el arrastre de restos suspendidos en la atmósfera por el viento o la lluvia.

2.3.2.- Evolución de los plaguicidas en el suelo

Cuando un plaguicida se aplica al campo, éste se distribuye en las distintas fases del ambiente (suelo, agua, aire, animales y plantas). Esta distribución dependerá tanto de las propiedades del plaguicida como de las propiedades de las distintas fases. Entre las propiedades del plaguicida hay que considerar su solubilidad, y por ello, todos los factores susceptibles de hacerla variar tienen una gran influencia en la dinámica del plaguicida.

Los procesos de la dinámica de los plaguicidas en suelos pueden englobarse en dos grupos: procesos de transferencia y procesos de transformación.

A continuación se realizará un comentario escueto sobre cada uno de ellos, si bien los procesos de adsorción-desorción serán desarrollados con más detalle.

Entre los procesos de transferencia se encuentran:

a) Adsorción-desorción

Los procesos de adsorción y desorción son, entre los distintos factores a considerar, los más importantes en cuanto a la interacción de plaguicidas con suelos. El proceso de adsorción se debe a la atracción entre una superficie sólida y un vapor o disolución, y resulta de la interacción de fuerzas que emanan de la superficie del adsorbente y las moléculas o iones del adsorbato. Este concepto es aplicable al caso de los plaguicidas. Estos pueden actuar como adsorbatos y quedar retenidos en el suelo, que actúa como adsorbente. Estos procesos serán estudiados con más detalle en otro apartado posterior, debido a la importancia que revisten, al influir en todos los demás procesos.

b) Absorción, exudación y retención por las plantas

La absorción consiste en la penetración de agua o sustancias sólidas, líquidas o gaseosas disueltas en ella, en las plantas. Puede realizarse por las raíces o por las hojas.

Introducción
La exudación es la salida de líquido de los órganos de las plantas en condiciones patológicas o al ser lesionados.

Depende de las propiedades del herbicida (Ashton y Crafts, 1981) tanto para maleza como para plantas de interés agrícola. Herbicidas como el 2,4-D poseen de moderada a alta solubilidad en agua y son muy móviles tanto fuera como dentro de las plantas, mientras que los herbicidas dinitroanilinas son muy insolubles y muy inmóviles en plantas. Normalmente, la cantidad de un herbicida móvil absorbido y retenido por la planta alcanza desde 0.1% hasta 5% de la cantidad total aplicada.

c) Volatilización

Es un proceso frecuente en el movimiento y desaparición de plaguicidas en el suelo, que consiste en el flujo del compuesto hacia la fase aire y supone uno de los mecanismos de pérdida de masa hacia la atmósfera. La volatilidad potencial está relacionada con su presión de vapor, pero la volatilidad efectiva depende, además de la temperatura, composición del suelo, contenido en agua, naturaleza del plaguicida y grado de adsorción.

d) Lixiviación y flujo capilar

Se le denomina también percolación o flujo de masas. La lixiviación es un proceso frecuente de transporte de los plaguicidas en profundidad a lo largo del perfil del suelo, que puede tener lugar tanto si el plaguicida está en solución como en fase sólida (por arrastre mecánico o lavado del mismo), debido a la influencia del agua, tanto de riego como de lluvia. Los procesos de movimiento de masas y de difusión están implicados en ambos casos (Hartley y Graham-Bryce, 1980; Taboada y col., 1994). Los factores a tener en cuenta que influyen en la lixiviación son: las características físico-químicas del suelo (White y col., 1986), frecuencia e intensidad de la lluvia y el riego (Wietersen y col., 1993), solubilidad del plaguicida, posibilidad de adsorción del plaguicida en los coloides del suelo.

e) Erosión

Al estar los plaguicidas tan íntimamente ligados a las partículas del suelo, ya sea por adsorción sobre las mismas o por simple mezcla, estas partículas pueden actuar como portadores del plaguicida sobre la superficie del suelo cuando son movidas de un lugar a otro por el agua o el aire, mediante el proceso de erosión.
f) Difusión

Es el proceso por el cual el plaguicida es transportado en el suelo debido a sus energías térmicas. A causa de ellas, hay un neto movimiento de posiciones de alta concentración a otras de menor concentración, y su importancia depende fundamentalmente de su solubilidad y de la presión de vapor del plaguicida.

Los factores más influyentes en la difusión de los plaguicidas en el suelo son: la solubilidad, la temperatura, la humedad y porosidad del suelo, la densidad de vapor y el grado de adsorción del plaguicida.

Entre los procesos de transformación cabe señalar:

a) Degradación química y microbiológica

Están íntimamente ligadas entre sí siendo difícil establecer independencia entre ellas, por lo que se suele denominar degradación bioquímica.

Así, la degradación química procede principalmente de reacciones de hidrólisis, oxidación y reducción, pudiéndose dar también isomerización, deshalogenación, desalquilación, reacciones de dismutación y reacciones con radicales libres (Blumhorst y Weber, 1992; Smith y Aubin, 1993).

La degradación microbiológica es quizá el mecanismo de descomposición de plaguicidas más importante, en el que las bacterias, algas y hongos del suelo los descomponen y los usan como fuente de alimentos y energía para su crecimiento (Blumhorst y Weber, 1994).

Por último, hay que señalar que la descomposición bioquímica de los plaguicidas depende principalmente de la estructura química de la molécula y de las condiciones del sistema suelo: composición, humedad, aireación, sustancias catalizadoras y microorganismos.

b) Degradación fotoquímica

Consiste en la degradación no biológica de plaguicidas mediante la luz solar. La cantidad de herbicida fotoquímicamente degradado depende de la susceptibilidad de la molécula, de su exposición a la luz, del tiempo de exposición, del grado de adsorción del plaguicida en el suelo, de la presencia de catalizadores fotoquímicos, del pH del suelo y del grado de aireación del mismo.
2.3.3.- Adsorción-desorción de plaguicidas en el suelo

Son los procesos más importantes, ya que condicionan directa o indirectamente la magnitud de los demás. La adsorción puede definirse como cualquier cambio en la concentración en una interfase que es diferente del seno de la fase (solución, gas, sólido). El sistema suelo es un sistema complejo, estando formado por muchas fases que incluyen sólidos, partículas coloidales, solución del suelo, solutos como nutrientes, plaguicidas y otras sustancias orgánicas naturales presentes, gases como CO₂, O₂, y vapores de herbicidas volátiles y otros orgánicos.

Un factor adicional a tener en cuenta es la variedad de mecanismos de adsorción que son posibles dependiendo de las propiedades químicas y físicas del herbicida. Así, los herbicidas iónicos son adsorbidos por los coloides del suelo mediante fuerzas culómbicas dependiendo de su carga iónica. Por el contrario los herbicidas catiónicos se adsorben por reacciones de intercambio catiónico, las especies aniónicas son repelidas por los coloides del suelo cargados negativamente y atraídas hacia los cargados positivamente. Por otra parte, los aniones fosforados se complejan con los coloides del suelo por intercambio de ligando y por reacciones de precipitación. Los plaguicidas que se presentan en forma molecular se unen a los coloides del suelo por enlaces de hidrógeno (fuerzas dipolo-dipolo dirigidas directamente), complejos de transferencia de carga, o por fuerzas de Van der Waals, de London o Debye y aquellos que son altamente apolares, por enlaces hidrofóbicos.

Los diferentes mecanismos de adsorción dan lugar a diferentes tipos de isotermas (Calvet, 1989). De acuerdo con Giles y col. (1960), se pueden establecer cuatro tipos diferentes de isotermas, que implican una afinidad distinta del adsorbato por el adsorbente:

- Isotema tipo S: presentan una pendiente inicial baja que aumenta con la adsorción y vuelve a disminuir a adsorción alta. Sugiere una afinidad de la superficie por el adsorbato menor que la de la solución, probablemente debido a competencia entre el adsorbato y el disolvente.

- Isotema tipo L: indican una afinidad relativamente alta de la superficie por el adsorbato, que disminuye al aumentar la adsorción como consecuencia de una disminución en la superficie disponible, de aquí que la pendiente vaya disminuyendo...
con la adsorción hasta alcanzar un valor constante.

- Isotermas tipo H: son un caso extremo de la curva tipo L, con una pendiente inicial muy grande, sugiriendo una afinidad muy alta.

- Isotermas tipo C: presentan una pendiente constante hasta alcanzar la adsorción máxima posible, y son debidas a una distribución constante del adsorbato entre la interfase y la solución.

El proceso inverso de la adsorción es la desorción y ésta puede ser total (adsorción reversible) o puede no serlo en gran medida (adsorción parcialmente irreversible). Las diferencias entre las isotermas de adsorción y desorción obtenidas para un mismo soluto es lo que se denomina histéresis, es decir, la cantidad de soluto que queda retenido por el adsorbente en los procesos de desorción es diferente de la esperada de acuerdo con su isoterma de adsorción, para una concentración de equilibrio dada.

Mediante la ecuación de Freundlich se puede describir la adsorción de herbicidas por suelos en sistemas acuosos multicomponentes:

\[
x/m = K C^n
\]

El término \(x/m\) refleja la cantidad de herbicida adsorbido por el suelo, \(K\) es una constante que refleja la capacidad de adsorción, \(C\) es la concentración del herbicida en solución, y \(n\) es una constante relacionada con la intensidad de enlace y con la curvatura que presenta la isoterma de adsorción.

La fracción de herbicida adsorbido depende del tipo de suelo. Asumiendo que \(n\) sea igual a 1, la ecuación anterior puede ser reordenada para dar lugar a un coeficiente de distribución para un herbicida dado en un suelo determinado, según la expresión:

\[
K = [x/m]/C = C/C_e
\]

Siendo \(C_e\) la cantidad de herbicida adsorbido en el suelo y \(C_e\) la cantidad de herbicida en solución. Los valores de \(K\) se encuentran normalmente altamente correlacionados con el contenido de materia orgánica de los suelos, aumentando a medida que aumenta el contenido de dicha materia orgánica. Si se asume que los herbicidas se adsorben sólo por superficies orgánicas y que el porcentaje de carbono orgánico del suelo es conocido, se puede calcular un valor \(K_{oc}\) (coeficiente de partición) para un herbicida dado adsorbido por un determinado suelo:

\[
Introducción
\]

\[
Introducción
\]

15
Koc=[K/\% carbono orgánico]\times100

De acuerdo con Kanazawa (1989), se obtienen altos valores de Koc para herbicidas con propiedades catiónicas y compuestos lipófilicos de baja a extremadamente baja solubilidad. El valor de Koc para un herbicida con propiedades básicas es dependiente del pKa del compuesto (cuanto mayor sea el pKa tanto mayor es el Koc). El valor de Koc para un herbicida con propiedadesácidas es también dependiente del pKa del compuesto y del pH del sistema (cuanto menor sea el pH, mayor será Koc). Koc para herbicidas no iónicos está normalmente inversamente relacionado con las solubilidades en agua de los compuestos. Este coeficiente es frecuentemente usado en el estudio de la adsorción de compuestos hidrofóbicos apolares, siendo el concepto compatible con la idea de que el carbono orgánico del suelo tiene la misma afinidad para un determinado compuesto apolar, sea cual sea la procedencia o fuente de dicho carbono orgánico. Cuando los enlaces hidrofóbicos son los responsables de la adsorción de un herbicida, los valores de Koc deben ser más o menos constantes entre los diferentes suelos.

Los procesos de adsorción-desorción no sólo están influenciados por la naturaleza físico-química de los plaguicidas, sino también por otra serie de factores suelo-dependientes. Entre estos factores se pueden citar la humedad, temperatura, pH, contenido en minerales y contenido en materia orgánica del suelo.

2.3.4.- Movilidad de plaguicidas en suelos

Los herbicidas disueltos en la solución del suelo son percolados a través del suelo por fuerzas gravitacionales y en línea ascendente por capilaridad. Los procesos de movimiento de masas y de difusión están implicados en ambos casos (Hartley y Graham-Bryce, 1980; Taboada y col., 1994). El flujo de agua a través del suelo es normalmente estimado mediante la ecuación de Darcy, la difusión del herbicida a través de la fase líquida por la ley de Fick, la adsorción del herbicida por los coloides del suelo a través de la ecuación de Freundlich y la partición del herbicida en su vapor a través de la ley de Henry. Fundamentándose en estas ecuaciones y a través de numerosas hipótesis se han desarrollado numerosos programas de modelización (CREAMS, PRZM, PESTAN, SESOIL) para predecir el movimiento de plaguicidas y herbicidas a través del suelo. En general dichos modelos pueden clasificarse en dos grupos:
Estudio de liberación controlada del herbicida aliclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

- modelos determinísticos basados en ecuaciones diferenciales clásicas como de convección-dispersión.
- modelos probabilísticos, basados en el concepto de riesgo, y priorizando parámetros claves.

Tres procedimientos principales en el laboratorio han sido empleados para medir la movilidad relativa de herbicidas a través de suelos: a) columnas de suelos (Weber y col., 1986); b) cromatografía de capa fina de suelo, desarrollados por Helling (1971); c) ensayos inclinados con bandejas de espesor fino de suelo, desarrollados por Gerber y col (1970). La movilidad relativa de un herbicida a través de un suelo dado se estima comparando la cantidad de plaguicida que aparece en el lixiviado, su distribución en el perfil del suelo después del lixiviado y la distancia recorrida relativa a la del frente de agua (\(R_t \)). Dependiendo del herbicida implicado y las condiciones del estudio, las cantidades de herbicida que aparecen en el lixiviado pueden ser desde no detectables hasta alcanzar más del 90%. Gómez de Barreda y col. (1993) observaron que la capacidad de lixiviación bajo las mismas condiciones disminuía en el orden: bromacilo>atrazina>simazina>terbumetona>terbutilazina>diuron>trifluralin.

Lo deseable sería encontrar un uno por ciento o menos del herbicida con sus metabolitos a una profundidad de 90 cm en el suelo al final de la estación bajo condiciones de campo.

2.4.- LIBERACION CONTROLADA DE PLAGUICIDAS

Los plaguicidas orgánicos que se aplican al suelo son una de las sustancias contaminantes que más preocupan actualmente, ya que es necesario el uso de cantidades masivas de los mismos para la obtención de buenas cosechas, pero a su vez, provocan problemas de contaminación ambiental con graves riesgos tanto para la especie humana como para los ecosistemas naturales. En el momento de la aplicación de un plaguicida...
se emplean dosis muy altas y posiblemente tóxicas, que frecuentemente decrecen rápidamente en el campo hasta concentraciones por debajo del nivel de efectividad mínimo. Como consecuencia, se necesita volver a aplicar repetidas veces el plaguicida para poder mantener controlada una plaga.

Muchos de los problemas que provocan los plaguicidas, tales como percolación, cortos periodos de actividad, fitotoxicidad, etc., pueden reducirse usando formulaciones que protegen al ingrediente activo, y en las que su liberación se produce de una manera controlada (Wilkins, 1983). La concentración del plaguicida en el medio suelo-planta-agua es así gobernada por el grado de liberación del plaguicida, que depende de la formulación que se use, así como de las pérdidas del mismo por degradación, percolación, volatilización y adsorción sobre los elementos constituyentes del suelo.

Actualmente la industria de los plaguicidas enfoca gran parte de su interés en el desarrollo de productos que no sean dañinos ni para las personas ni para el medioambiente y que a la vez sean eficientes en la lucha contra una plaga específica, usando las mínimas dosis posibles y que actúe a lo largo de un tiempo suficiente para obtener la eficacia biológica deseada, reduciendo al mínimo sus efectos de contaminación. Existen distintas técnicas y materiales que se emplean para la preparación de formulaciones de liberación controlada de plaguicidas. La mayoría de los procesos de recubrimiento y encapsulación han sido desarrollados por grandes industrias y la mayor parte de ellos continúan bajo patente, por lo que no se conocen los procedimientos ni los productos empleados.

Las formulaciones de liberación controlada han adquirido gran significación en estos últimos años en la industria de los plaguicidas debido a las ventajas que aportan, ya que reducen la toxicidad del plaguicida y minimizan su impacto medioambiental al reducir la evaporación y la percolación del mismo. Además, el recubrimiento de los plaguicidas los protegen de las influencias medioambientales, reduciéndose las pérdidas por degradación fotolítica, química y microbiológica, por lo que se necesita aplicar menos cantidad de materia activa para conseguir la eficacia deseada y ello conlleva una reducción en los niveles de plaguicidas en el medioambiente. Por otra parte, se ha comprobado que las formulaciones de liberación controlada pueden aumentar la selectividad del plaguicida y además pueden reducir las incompatibilidades físicas que surgen cuando se usan mezclas de plaguicidas, así como reducir el antagonismo biológico de ciertas mezclas cuando se aplican al campo.
Según el tamaño de la partícula final obtenida, las formulaciones de liberación controlada pueden dividirse en microcápsulas, micropartículas y gránulos, aunque no hay que olvidar que existen otras formulaciones en las que se emplean sustancias soportes con diversas formas (láminas, tubos, films, etc.). Las microcápsulas son partículas entre 1 y 100 micras compuestas por una pared o cubierta y un núcleo que es la molécula de plaguicida. Las micropartículas y los gránulos están compuestos por una sustancia matriz en la que el plaguicida está uniformemente disuelto o disperso. Se diferencian en el tamaño de ambas, ya que las micropartículas se encuentran entre 1 y 100 micras y los gránulos entre 0.2 y 2 mm.

En el caso de las microcápsulas, las sustancias que más comúnmente se han empleado como recubrimiento del plaguicida han sido las siguientes: poliurea, poliamida, resina de melamina, nylon, gelatina, etc. (Scher, 1999). En los últimos años han empezado a desarrollarse y utilizarse también las encapsulaciones moleculares con ciclodextrinas (Szejtli, 1982) en las que se forman unos complejos de inclusión entre dos o más moléculas, siendo una de ellas la molécula hospedadora que es la que incluye a la molécula huesped, que sería el plaguicida. Las ciclodextrinas pueden atrapar una gran variedad de moléculas que tengan el tamaño de uno o dos anillos de benceno, o incluso moléculas más largas que tengan una cadena de tamaño comparable, formando complejos de inclusión (Szejtli, 1988).

Estas encapsulaciones con ciclodextrinas tienen las ventajas anteriormente mencionadas para otras formulaciones de liberación controlada, pero además presentan para ciertos plaguicidas poco solubles la ventaja del aumento de su solubilidad en agua, y por tanto su disponibilidad en la solución del suelo (Ginés y col., 1998; Morillo y col, 1998; Pérez-Martínez y col., 2000). Ello se debe a que las ciclodextrinas presentan alta solubilidad en agua por tener grupos hidroxilos libres en la superficie externa del anillo, siendo la cavidad interna ligeramente apolar. Pero son muy diversas las aplicaciones de los complejos de inclusión de ciclodextrinas y plaguicidas. Así, Kamiya y col. (1994) han demostrado que el efecto de inclusión de la β-ciclodextrina sobre paración inhibe su fotodegradación; el aumento en la disponibilidad de compuestos como el p,p'-DDT mediante su encapsulación con ciclodextrinas ha sido propuesto como un método para la recuperación de suelos contaminados (Wang y Brusseau, 1993); Dailey y col. (1993) describen la preparación y caracterización espectroscópica de complejos de inclusión de...
aldicarb y sulprofos con ciclodextrinas; la liberación controlada de plaguicidas organofosforados ha sido objeto de estudio por parte de Szente (1998).

Dentro de las microcápsulas es interesante señalar el empleo reciente de liposomas y micelas como moléculas huesped para plaguicidas. La formación de liposomas y micelas ha sido extensivamente investigada para su uso en la industria farmaceútica y cosmética (Crommelin y Schreier, 1994). Existen pocos trabajos hasta el momento en lo que se refiere al empleo de vesículas y micelas en la liberación controlada de plaguicidas (Mishael y col., 2002a; Mishael y col., 2002b), aunque la baja solubilidad de muchos plaguicidas en agua ha dado lugar al uso de soluciones micelares para las que se emplean surfactantes.

En el caso de micropartículas y gránulos, el tamaño de partícula (y la uniformidad) es importante, especialmente en aplicaciones donde la duración de la salida del plaguicida sea crítica. Sin embargo, una formulación conteniendo un rango de tamaños de partícula relativamente amplio tendrá un periodo de efectividad mayor.

La biodegradabilidad de los materiales de formulación también es un aspecto importante en cuanto a la liberación controlada de plaguicidas para aplicaciones medioambientales (Lohmann, 1992). Algunos materiales biodegradables usados en estas formulaciones son los siguientes: polímeros sintéticos, tales como polipéptidos o polivinilalcohol; biopolímeros provenientes de plantas, animales o microorganismos, tales como polisacáridos (almidón, celulosa, pectina, etc.), proteínas, poliésteres, ligninas, látex, resinas, etc.; biopolímeros modificados por sustitución, “crosslinking” o “grafting”, etc. De todos estos materiales biodegradables la macromolécula polifenólica lignina representa un producto abundante en plantas terrestres que protege frente a la luz, agua y microorganismos, degradándose a una menor velocidad que los polisacáridos.

y volatilización, o por procesos de degradación fotoquímica, bioquímica y/o microbiológica, y se conoce relativamente poco sobre la influencia de distintos factores medioambientales en el comportamiento de las formulaciones de liberación controlada.

Wilkins (1983) ha estudiado durante años la cinética de liberación de herbicidas e insecticidas de gránulos con matrices de lignina, concluyendo que la liberación del plaguicida se produce mediante un mecanismo de difusión controlada. Estudios realizados con el herbicida 2,4-D y gránulos de lignina dieron como resultado el control de malas hierbas en plantaciones de coníferas durante 14 meses (Ferraz y col., 1997). Variando la concentración del plaguicida, el tipo de matriz empleada, la temperatura del ensayo, el tamaño de los gránulos y los aditivos empleados, el tiempo necesario para liberar el 50% del plaguicida (T_{50}) puede variar desde 2 días hasta varias semanas (Cotterill y col., 1996).

El tipo de plaguicida encapsulado y sus grupos funcionales tienen una gran influencia en el grado de liberación del mismo, debido a la energía de enlace químico que se establece entre la matriz y el plaguicida, así como a la facilidad de solubilización del mismo. Cuanto mayor es la solubilidad de un plaguicida, menor es el valor de T_{50}. El coeficiente de partición octanol-agua de un plaguicida (K_{ow}) es también un buen factor para predecir el valor de T_{50} y el grado de liberación, ya que cuanto mayor sea K_{ow}, más lenta es la liberación, pues la afinidad del plaguicida por la fase orgánica (lignina, almidón, celulosa, etc.) es mayor que por el agua.
El uso de aditivos solubles en agua a la fase matriz influye también en la cinética de liberación. Así por ejemplo, la adición de urea incrementó el grado de liberación de diurón en matrices de lignina (Cotterill y Wilkins, 1996). La rápida disolución de la urea crea una estructura porosa, incrementando la penetración del agua dentro de los gránulos de lignina.

Polímeros naturales como el almidón han sido utilizados también como material matriz. Las formulaciones encapsuladas con almidón presentan una difusión controlada del ingrediente activo desde el interior del gránulo hasta la solución del suelo, por lo que le influyen factores tales como el tamaño del gránulo, la humedad, temperatura y actividad microbiana. Se han usado mucho para los plaguicidas atrazina, alaclor y metolaclor (Buhler y col., 1994; Mills y Thurman, 1994; Hickman y col., 1999).

También se han empleado alginatos en formulaciones tipo gel, que requieren además la incorporación de adsorbentes dentro del gel. Los adsorbentes más empleados han sido arcillas, sílice, alúmina o carbón, dando lugar a un mayor control en el grado de liberación (Pepperman y Kuan, 1993; Johnson y Pepperman, 1995).

Algunos derivados de la celulosa se emplean también como matrices para formulaciones de liberación controlada de plaguicidas, aunque su uso y el desarrollo de estas formulaciones no está tan extendido como los de lignina o almidón. Los derivados de la celulosa son buenos candidatos para este tipo de formulaciones ya que son biodegradados vía hidrólisis por la enzima celulasa, producidas por bacterias y hongos muy corrientes en medios naturales. Algunos de estos derivados son solubles en agua o inestables, por lo que han de hacerse insolubles o estabilizarlos durante la síntesis de la cadena macromolecular mediante “crosslinking” o por adición de ciertas sustancias. Así por ejemplo, la carboximetilcelulosa se ha usado estabilizada con gelatina (Prasad y Kalyanasundaram, 1993). La liberación de aldicarb de carboximetilcelulosa con aluminio ha sido también descrita (Darvari y Hasirci, 1996). Dailey y col., (1993 y 1998) han estudiado las propiedades de liberación controlada de los plaguicidas atrazina, metribuzín y cianazina de formulaciones poliméricas elaboradas con derivados de celulosa: etilcelulosa y butirato y acetato de celulosa. Fernández-Urrusuno y col., 2000 estudiaron la liberación controlada del plaguicida alaclor con formulaciones de distintos tipos de etilcelulosa.

Los minerales de la arcilla representan otro grupo de aditivos para conseguir formulaciones de liberación controlada. Modificando el espacio interlaminar de los

Una de las líneas recientes de investigación en liberación controlada de plaguicidas se basa en la biodegradabilidad en suelos de distintos polímeros, tanto naturales como sintéticos. De esta forma, el plaguicida no necesita estar químicamente unido a la matriz, y, por otra parte, la cinética de liberación del mismo no estaría controlada por el grado de difusión del plaguicida en cuestión, sino por el grado de biodegradabilidad del polímero, independientemente de las propiedades del plaguicida.

Así, a través de la elección de un polímero idóneo, su cinética dependerá de la actividad microbiiana del suelo, que varía según la estación del año de una forma paralela a como lo hace el ciclo de crecimiento de las cosechas (Marshall y col., 1999).
MATERIALES Y MÉTODOS
3.- MATERIALES Y MÉTODOS

3.1.- MATERIALES

3.1.1.- Plaguicida

El Alaclor (2-cloro-N-(2,6-dietilfenil)-N-(metoximetil) acetamida) está relacionado estructuralmente con los herbicidas cloroacetanilidas.

\[
\begin{align*}
\text{CH}_2\text{CH}_3 & \quad \text{COCH}_2\text{Cl} \\
\text{CH}_2\text{CH}_3 & \quad \text{CH}_2\text{OCH}_3
\end{align*}
\]

A temperatura ambiente es un sólido de color que puede variar entre blanco amarillento y rojo oscuro, y es inodoro. A temperaturas superiores a su punto de fusión (40-41°C) se trata de un líquido de color amarillo a rojo. La solubilidad en agua es 240 mg/L a 25°C. También es soluble en los disolventes orgánicos: dietiléter, acetona, benceno, cloroformo, etanol, y acetato de etilo. Ligeramente soluble en heptano. Se hidroliza por ácidos y bases fuertes. Es estable a la luz ultravioleta y se descompone a 105°C.

Mecanismo de acción: actúa inhibiendo la síntesis de proteínas y la elongación de las raíces. Se trata de un herbicida sistémico selectivo, se absorbe rápidamente por los tallos en germinación, pero también por las raíces, sufre traslocación a través de la planta, y se acumula principalmente en las partes vegetativas más que en las reproductivas.

Es usado como herbicida de preemergencia en cantidades de 1.68-4.48 Kg/ha para el control de malas hierbas en los cultivos de maíz, soja, sorgo, cacahuetes y algodón.

La adsorción y lixiviación está afectada por la materia orgánica del suelo. El incremento de adsorción es responsable de la disminución de la lixiviación en los suelos.
con alto contenido en materia orgánica. La volatilización y degradación son más importantes en la disipación de alaclor que la escorrentía y la lixiviación.

3.1.2.- Polímero de celulosa

La etilcelulosa (EC) 30-60 mPa Ethocel 40 fue adquirida a Fluka (Buchs, Switzerland).

La etilcelulosa es un éter etílico de celulosa. Se trata de un polímero de cadena larga formado por unidades de glucosa anhidrada enlazadas por grupos acetales.

Es un sólido pulverulento de color que puede variar del blanco al marrón claro, sin sabor y fluye fácilmente.

Se trata de un agente de recubrimiento y viscosizante.

En el campo farmacéutico es ampliamente utilizada en formulaciones orales y tópicas como agente de recubrimiento hidrofóbico. Los recubrimientos de etilcelulosa se usan para modificar la liberación del principio activo o para aumentar la estabilidad de una formulación.

La etilcelulosa absorbe pequeñas cantidades de agua a humedad relativamente alta o durante la inmersión. El agua adsorbida se evapora fácilmente. Es prácticamente insoluble en glicerina, propilenglicol, y agua. La etilcelulosa que contiene más del 46.5% de grupos etoxilos, en nuestro caso 48-49.5%, es soluble en cloroformo, etanol (95%), acetato de etilo, metanol y tolueno.

Hay comercializadas distintas clases de etilcelulosa que difieren en el contenido en grupos etoxilos y en el grado de polimerización.

Es un material estable, ligeramente higroscópico. Es químicamente resistente a los álcalis, tanto diluidos como concentrados, y a disoluciones de sales, aunque es más sensible a sustancias ácidas que los ésteres de celulosa.

La etilcelulosa está sujeta a degradación oxidativa por la presencia de luz solar o de luz ultravioleta a altas temperaturas. Se puede prevenir mediante el uso de antioxidantes y compuestos con propiedades de absorción de luz entre 230-340 nm.
3.1.3.- Suelo

El suelo empleado fue un arenoso franco denominado CR, clasificado como Typic Xeropsamment. Este suelo fue tomado de una zona de pino situada en la finca experimental La Hampa, en Coria del Río (Sevilla) perteneciente al Instituto de Recursos Naturales y Agrobiología de Sevilla y que durante bastantes años no había sido sometido a ninguna práctica cultural. Sus características más relevantes son su textura gruesa (arena) y su bajo nivel de fertilidad intrínseca.

3.2.- MÉTODOS

3.2.1.- Determinaciones analíticas

3.2.1.1.- Determinación del plaguicida Alaclor

La concentración de alaclor se determinó por cromatografía líquida de alta resolución (HPLC Shimadzu), empleando una columna C$_{18}$ (Hypersil ODS 515 x 0.4 cm) con una temperatura del horno a 30°C. La fase móvil empleada fue acetonitrilo/agua 50:50, a un flujo de 1ml/min. El volumen de inyección fue de 50 µlitros. Para la detección se utilizó un detector de fila de fotodiodos (diode array) con una longitud de onda de 220 nm.

3.2.1.2.- Determinaciones analíticas para la caracterización del suelo

Antes de proceder a los diferentes ensayos, las muestras de suelo se secaron al aire a temperatura ambiente, se separaron las piedras y se rompieron los agregados con un rodillo. Las muestras así preparadas se pasaron por un tamiz con luz de malla de 2 mm.

Para los diferentes ensayos se tomaron alícuotas representativas, siguiendo el método del “cuarteado” y para aquellos ensayos con necesidad de un mayor grado de subdivisión se molieron en mortero de ágata.

a) Análisis químico de los suelos.

Se realizó el análisis químico del suelo total, para lo cual, las muestras se
sometieron a una disgregación triácida con ácido fluorhídrico, ácido nítrico y ácido perclórico siguiendo la metodología propuesta por Bennet y col. (1962) con ligeras variantes (Pérez Rodríguez y col., 1990). Por este procedimiento se evapora la sílice como SiF₄.

Para la disgregación se partieron de 1.25 g de muestra seca y molida finamente en mortero de ágata que se colocaron en una cápsula de teflón a la que se le añadieron 10 mL de ácido nítrico 1:1 y 10 mL de ácido perclórico 1:1, dejándola en reposo durante 15 minutos, al cabo de los cuales, se adicionaron 20 mL de ácido fluorhídrico y se evaporó a sequedad. Este tratamiento se repitió con ácido nítrico y perclórico llevándola a sequedad hasta la desaparición total de humos blancos. Finalmente, una vez frío, se humedeció añadiéndose 3 mL de ácido clorhídrico concentrado y se calentó suavemente hasta disolución total de la muestra. Una vez fría, se filtró y se enrasó hasta 50 mL. A partir de esta disolución base se tomaron diferentes diluciones, acordes con las concentraciones de los elementos en la muestra.

Para determinar el contenido de sílice se realizaron las fusiones de las muestras en un autoclave de teflón con una mezcla de ácido fluorhídrico, ácido clorhídrico y ácido nítrico a 140°C durante 1 hora. Una vez fría se le agregaron 5 g de ácido ortobórico sólido y 100 mL de agua destilada, colocándose en una estufa a 80°C hasta su disolución completa. Dejada a temperatura ambiente se enrasó en un matraz de plástico ya que los matraces de vidrio se atacan parcialmente.

Las concentraciones de los elementos se determinaron por espectrofotometría de absorción atómica para el Si, Al, Fe, Ti, Ca y Mg, así como para los elementos minoritarios Mn, Cu, Ni, Co, Pb, Cd, Cr, Zn, y por fotometría de llama para los elementos Na y K.

Para los elementos mayoritarios, los resultados se expresan en porcentajes de óxidos respecto a la muestra seca, y para los minoritarios, en mg/L.

Para la determinación de la humedad y las pérdidas por calcinación se partió de 1g de muestra finamente molida, por duplicado, colocándolas en dos críosoles de porcelana y estos dentro de una estufa a 110°C durante 24 horas. Transcurrido este tiempo se pesan las muestras y posteriormente se introducen en un horno a 1100°C durante 45 minutos, y se vuelven a pesar. Los resultados se dan por diferencia de pesos.
Estudio de liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

y en tanto por ciento.

b) Determinación de la capacidad de cambio catiónico (CCC) de los suelos.

Para la realización del presente ensayo se lavaron varias veces 2 g de suelo con etanol, para poder eliminar sales. Posteriormente se trataron con 20 mL de acetato amónico a pH 7 durante 24 horas, recuperándose el sobrenadante y volviendo a repetir el proceso tres veces más. En la solución recogida se midió Na, K, Ca y Mg. La muestra sólida se lavó cuatro veces con etanol para eliminar el exceso de amonio, se secó a 40°C y se destiló el suelo para determinar el contenido en amonio.

c) Determinación de carbonatos.

El suelo es tratado con HCl y el volumen de CO₂ desprendido es medido a través de un calcímetro de Bernard. Los resultados se expresan en porcentaje de Ca₂CO₃ sobre suelo.

d) Determinación del carbono orgánico total.

Existe más de un método para determinar el carbono orgánico total de un suelo. El método seguido ha sido el basado en la técnica descrita por Walkley y Black (1934), que consiste en la oxidación de la materia orgánica con dicromato potásico (H₂Cr₂O₇) en presencia de ácido sulfúrico y posterior valoración del dicromato no reducido con sal de Mohr (valoración por retroceso), según la reacción:

\[\text{Cr}_2\text{O}_7^{2-} + 6\text{Fe}^{2+} + 14\text{H}^{+} \rightarrow 2\text{Cr}^{3+} + 6\text{Fe}^{3+} + 7\text{H}_2\text{O} \]

Para ello se tomaron 2 g de muestra de suelo, finamente pulverizada y secada en una estufa a 60°C durante toda la noche. La muestra una vez pesada se introdujo en un matraz erlenmeyer de 500 mL y se le agregaron 10 mL K₂CrO₄ 1 N, sometiéndose posteriormente a agitación suave hasta que todo el suelo se hubo empapado de esta solución. A continuación se agregaron 20 mL de ácido sulfúrico concentrado con agitación suave durante treinta segundos, al cabo de los cuales se dejó en reposo durante treinta minutos. Después se añadieron 200 mL de agua desmineralizada y se enfrió hasta temperatura ambiente. Se añadieron 10 mL de ácido fosfórico concentrado seguido de 1 mL de solución de difenilamina (2.5 g de producto disuelto en 20 mL de agua y 100 mL de ácido sulfúrico concentrado). Nuevamente se enfrió hasta temperatura ambiente e
Estudio de liberación controlada del herbicida alachor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

inmediatamente se procedió a valorar el exceso de dicromato no reducido mediante solución de sal de Mohr 0.5 N.

e) Determinación de la materia orgánica.

El conocimiento de la materia orgánica en el suelo es de gran interés, pero es también importante conocer cual es el estado de dicha materia orgánica y, sobre todo, su grado de humificación.

Suponiendo que la materia orgánica contiene el 58% de C, se ha utilizado 1.724 como factor de conversión de carbono orgánico total a materia orgánica, de acuerdo con Jackson (1982).

f) Determinación del pH.

Se siguió el método propuesto por Guitian y Carballas (1976), mediante la medida en pasta saturada de muestra en agua. Para ello se llenó un vaso, de 50 ml de capacidad, de muestra hasta las ¾ partes y se añadieron cantidades sucesivas de agua desmineralizada hasta obtener una pasta espesa. Sin agitar y dejando que el suelo se humedeciera por capilaridad, se siguió agregando agua hasta que se cerrara lentamente un orificio hecho en el centro del suelo con ayuda de una varilla. Se dejó reposar durante treinta minutos, transcurridos los cuales, se hizo la medida potenciométrica con electrodo de vidrio.

g) Determinación de hierro, aluminio y manganeso amorfos.

Se ha extraído el hierro, aluminio y manganeso amorfos presentes en los suelos siguiendo el método propuesto por McKeague y col. (1971). Se han empleado 0.75g de muestra dispersada en 30 mL de solución tampón oxálico-oxalato amónico a pH 3, agitándose durante 4 h en la oscuridad. El hierro, aluminio y manganeso se determinaron por absorción atómica expresando los valores como óxidos.

h) Extracción de las fracción arcilla.

Las distintas fracciones del suelo a estudiar se extraen suspendiendo la muestra en agua destilada y siguiendo la Ley de Stokes, según la cual primero se deposita el material más grueso (arena), luego el material mediano (limo) y por último el más fino (arcilla).
La muestra de suelo se coloca en un recipiente que puede ser del tipo de una probeta de 1000 mL y se agrega agua destilada, se agita lo mejor posible y se deja reposar. Una vez transcurridas 17 horas, se pueden extraer 21 cm. Se vuelve a agregar el mismo volumen de agua destilada que se haya retirado y se agita de nuevo. Esta operación se repite cada día hasta que la solución sobrenadante quede completamente transparente. Una vez extraída la fracción arcilla, menor de 2 micras, y para que flocule o se deposite más rápido, se puede usar una pequeña cantidad de cloruro de magnesio, para lo cual se prepara una solución en la que en un litro de agua destilada se disuelven 100 g de MgCl₂.

Una vez extraída la arcilla, se desecha el máximo de agua del recipiente por decantación y se coloca en bolsas de diálisis que se sumergen en un recipiente con agua destilada. El material de estas bolsas permite el intercambio por ósmosis de los cloruros que tiene la arcilla proveniente del MgCl₂; esto se hace para lavar bien la arcilla. El agua se cambia diariamente hasta comprobar con unas gotas de nitrato de plata que el agua del recipiente no contenga cloruros. Cuando se haya comprobado que las aguas de lavado de la arcilla está libre de cloruros, se saca de las bolsas y se coloca en una cápsula y se seca al aire o en una placa eléctrica a baja temperatura.

3.2.2.- Técnica de elaboración de microesferas

Las microesferas se han preparado utilizando el método de extracción-evaporación del disolvente. Consiste en la formación de una emulsión. En nuestro caso se trata de una emulsión oleosa/acuosa. En la fase interna u oleosa, constituida por 15 mL de cloroformo, se disuelven el herbicida, la etilcelulosa y el polietilenglicol, en caso de que se utilice este último polímero. Las cantidades de herbicida utilizadas han sido 100 ó 200 mg y siempre se ha mantenido fija la cantidad de EC40 en 1000 mg, lo cual consiste en una relación de alaclor respecto a la etilcelulosa de 1/5 ó 1/10. La fase
oleosa se prepara pesando las cantidades establecidas de herbicida y polímero, se introducen en un matraz y se añade el cloroformo, se agita energéticamente hasta que se disuelvan los sólidos por completo. Posteriormente se deja reposar hasta que se eliminen las burbujas de aire.

Otra variable a tener en cuenta ha sido la adición o no de PEG$_{4000}$ que es un polímero que favorece la formación de canales en las microesferas. Se han preparado micropartículas con el 0, 20 y 40% de polietilenglicol respecto a la EC40, lo que corresponde a 0, 200 y 400 mg de PEG$_{4000}$ respectivamente.

La fase acuosa consiste en alcohol polivinílico (PVA), tensioactivo que facilita la formación de la emulsión, y se disuelve en 150 mL de agua destilada. El porcentaje de tensioactivo también se ha variado, para estudiar la influencia del mismo en las características de las microesferas. Los pesos de PVA utilizados han sido 60, 112.5 y 225 mg, lo cual supone un porcentaje respecto al volumen de agua del 0.04, 0.075 y 0.15%. Cuando se añade el tensioactivo a los 150 mL de agua destilada que se encuentra en el frasco en el que se van a formar las microesferas, se cubre con parafilm y se somete a ultrasonidos durante 15-30 minutos. Pasado este tiempo se lleva a un agitador de palas, se añaden varias gotas de octanol para evitar la formación excesiva de espuma, se enciende el agitador y se selecciona y ajusta la velocidad de agitación a 300, 600 ó 900 rpm.

Después se incorpora la fase oleosa, gota a gota, sobre la fase acuosa que se encuentra en agitación. Se forma la emulsión y se deja en agitación durante 20 horas, tiempo suficiente para la evaporación del cloroformo. Una vez transcurrido ese tiempo se filtran las microesferas con bomba de vacío, se lavan con 250 mL de agua destilada y se secan en estufa a temperatura inferior a 40°C.

3.2.3.- Caracterización morfológica de las microesferas

La morfología superficial de las microesferas y su tamaño de partícula se ha caracterizado mediante microscopía electrónica de barrido, utilizando un microscopio JSM-5400. Las microesferas se fijaron a un portaobjetos de aluminio y posteriormente fueron metalizadas mediante baño de oro, para hacerlas conductoras.
3.2.4.- Determinación del rendimiento de producción, carga de plaguicida y eficacia de encapsulación

Rendimiento de producción: expresa el porcentaje en peso de microesferas obtenidas con respecto a la cantidad total de material (herbicida y polímero) empleado.

\[
RP(\%) = \left(\frac{\text{Peso de microesferas obtenido}}{\text{Peso total de herbicida + polímero}} \right) \times 100
\]

Carga o contenido de plaguicida: hace referencia a la cantidad de plaguicida encapsulado en las microesferas.

\[
CP(\%) = \left(\frac{\text{Cantidad de herbicida encapsulado}}{\text{Peso de microesferas obtenido}} \right) \times 100
\]

Para determinar el contenido en alaclor de las microesferas se realizaron medidas por triplicado. Se pesaron 5 mg de alaclor y se disolvieron en 10 mL de metanol, determinándose éste por HPLC.

Eficacia de encapsulación: relación entre el herbicida encapsulado y el teórico.

\[
EE(\%) = \left(\frac{\text{Cantidad de herbicida encapsulado}}{\text{Cantidad teórica de herbicida}} \right) \times 100
\]

3.2.5.- Tamización de las microesferas

Se ha tamizado cada tipo de microesferas con tamices de 100, 200 y 400 μm de luz de malla, lo cual ha proporcionado 4 fracciones distintas de tamaño de partícula: < 100 μm, 100-200 μm, 200-400 μm y > 400 μm.

3.2.6.- Estudios de liberación

Se ha empleado un aparato de paletas giratorias Sotax AT7 Smart., con velocidad de rotación 50 rpm y temperatura 25ºC. Para cada tipo de microesfera se ha añadido la cantidad correspondiente a 5mg/L de alaclor a 1 litro de agua destilada en
agitación. A los tiempos fijados se ha tomado 1 mL de muestra, analizada posteriormente por HPLC, y se ha repuesto con 1 mL de agua destilada. Estos estudios se realizaron por triplicado para cada tipo de microsfera obtenido.

3.2.7.- Movilidad en columnas de suelo

Los experimentos de movilidad en columnas de suelo se llevaron a cabo por triplicado para el suelo seleccionado. Se emplearon columnas de metacrilato de 30 cm de altura y 3.0 cm de diámetro interno. La parte final de la columna fue cubierta por un tejido de nylon, sobre el que se colocó una fina capa de lana de vidrio (0.5g) para contener firmemente al suelo en el interior de la columna. La parte superior de la columna fue cubierta con lana de vidrio para evitar las alteraciones que el suelo pudiera sufrir a la hora de añadir la solución. 246 gramos de suelo se adicionaron a la columna y se procedió a compactarlo, alcanzándose 24 cm de altura.

En anteriores experimentos, dos columnas de suelo fueron saturadas por capilaridad con agua destilada para obtener un contenido de humedad del 100% de la capacidad del campo. El valor de 1 volumen de poro se calculó por la diferencia de peso entre la columna de suelo saturada y su peso seco. En este suelo (CR) el volumen de poro corresponde a 57.47 mL.

Las columnas de suelos fueron acondicionadas adicionando 5 volúmenes de poro de una solución de 0.01 M de Ca(NO₃)₂, para así equilibrarlas con el electrolito de fondo, y posteriormente fueron añadidos 7.5 mL de una disolución de 30 mg/L de alaclor o la cantidad de microesferas correspondiente a 0.225 mg de alaclor. Las curvas de elución se obtuvieron por la aplicación diaria de 25 mL de agua destilada, durante 27 días.
RESULTADOS Y DISCUSIÓN
4.- RESULTADOS Y DISCUSIÓN

4.1.- CARACTERIZACIÓN DE MICROESFERAS

Se realizaron 9 tipos distintos de microesferas en las que se modificaron las siguientes variables: relación herbicida/polímero (A/EC), porcentaje de tensioactivo (PVA) en la fase acuosa, adición de distintas cantidades de polietilenglicol (PEG4000) y velocidad de agitación. En la Tabla 1 se muestran las condiciones de partida para la elaboración de las distintas microesferas, así como sus respectivos porcentajes de rendimiento de producción, carga de plaguicida y eficacia de encapsulación obtenidos.

Tabla 1. Composición y porcentajes de rendimiento de producción (RP), carga de plaguicida (CP) y eficacia de encapsulación (EE) de las diferentes microesferas obtenidas.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>A/EC</th>
<th>PVA (%)</th>
<th>PEG4000 (mg)</th>
<th>Velocidad (rpm)</th>
<th>RP (%)</th>
<th>CP (%)</th>
<th>EE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1/10</td>
<td>0.075</td>
<td>-</td>
<td>600</td>
<td>77.18</td>
<td>6.56</td>
<td>55.69</td>
</tr>
<tr>
<td>A2</td>
<td>1/5</td>
<td>0.075</td>
<td>-</td>
<td>600</td>
<td>72.17</td>
<td>17.12</td>
<td>74.13</td>
</tr>
<tr>
<td>A3</td>
<td>1/10</td>
<td>0.15</td>
<td>-</td>
<td>600</td>
<td>71.73</td>
<td>5.96</td>
<td>47.02</td>
</tr>
<tr>
<td>A4</td>
<td>1/5</td>
<td>0.15</td>
<td>-</td>
<td>600</td>
<td>77.08</td>
<td>12.98</td>
<td>60.03</td>
</tr>
<tr>
<td>A5</td>
<td>1/5</td>
<td>0.15</td>
<td>-</td>
<td>300</td>
<td>80.40</td>
<td>14.47</td>
<td>69.80</td>
</tr>
<tr>
<td>A6</td>
<td>1/5</td>
<td>0.15</td>
<td>-</td>
<td>900</td>
<td>70.89</td>
<td>14.98</td>
<td>63.72</td>
</tr>
<tr>
<td>A7</td>
<td>1/5</td>
<td>0.15</td>
<td>200</td>
<td>600</td>
<td>76.55</td>
<td>13.78</td>
<td>63.29</td>
</tr>
<tr>
<td>A8</td>
<td>1/5</td>
<td>0.15</td>
<td>400</td>
<td>600</td>
<td>77.33</td>
<td>13.99</td>
<td>69.51</td>
</tr>
<tr>
<td>A9</td>
<td>1/5</td>
<td>0.04</td>
<td>-</td>
<td>600</td>
<td>79.11</td>
<td>13.73</td>
<td>65.17</td>
</tr>
</tbody>
</table>
4.1.1.- Influencia de la relación alaclor/etilcelulosa

Para ver la influencia de la relación alaclor/etilcelulosa se pueden comparar las microesferas A1 con A2, relación A/EC 1/10 y 1/5, respectivamente, y 0.075% de PVA en ambos casos. También se pueden comparar A3 con A4. Las microesferas A3 se han preparado con la relación A/EC 1/10 y 0.15% de PVA y las microesferas A4 con la relación 1/5 y también con el 0.15% de tensioactivo.

En todos los casos, la relación A/EC 1/5 proporciona mayor porcentaje de eficacia de encapsulación (EE) que la relación 1/10 (Tabla 1), lo cual concuerda con la observación de Pérez Martínez y col. (2001) de un aumento en la eficacia de encapsulación del herbicida norflurazona en etilcelulosa al aumentar la relación plaguicida/polímero.

El rendimiento de producción (RP) de las microesferas A1, A2, A3 y A4 no parece verse apenas afectado por el porcentaje de PVA usado, ni por la relación A/EC.

Como cabría esperar, son las microesferas con la relación A/EC 1/5, las que presentan mayores porcentajes de carga de alaclor (CP), 17.12% para las microesferas A2 que se comparan con las microesferas A1, cuya carga de alaclor es de 6.56%. Lo mismo ocurre con las microesferas A4 de relación A/EC 1/5, pues tienen una carga de plaguicida del 12.98%, mientras que las microesferas con las que son comparables, A3, de relación A/EC 1/10, poseen una carga de alaclor del 5.96%

También se ha observado el aumento del diámetro de las microesferas al aumentar la relación herbicida/polímero, como se puede apreciar en la Tabla 2. Las microesferas A2 y A4, cuya relación A/EC es 1/5 presentan mayores porcentajes de las fracciones de tamaño mayor de 400 μm y comprendido entre 200 y 400 μm. Sin embargo, en las microesferas A1 y A3, relación A/EC 1/10, predominan las partículas cuyo tamaño está comprendido entre 200 y 400 μm.

En los estudios de velocidad de disolución, cuya duración ha sido de 7 días, (168 horas), se observa en todos los casos una salida del herbicida no lineal desde las microesferas, con una fase inicial más rápida que disminuye con el tiempo. En todos los casos la salida de alaclor de la microesferas era retardada en comparación con el perfil de disolución del herbicida puro. Ello es indicativo de un proceso de difusión del herbicida desde el interior de las microesferas hacia la solución, probablemente a través de los poros de las mismas.
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Tabla 2. Distribución de tamaños de partícula de las microesferas obtenidas (%).

<table>
<thead>
<tr>
<th>Muestra</th>
<th>> 400 μm</th>
<th>400-200 μm</th>
<th>200-100 μm</th>
<th><100 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10.45</td>
<td>51.94</td>
<td>14.27</td>
<td>23.34</td>
</tr>
<tr>
<td>A2</td>
<td>42.24</td>
<td>52.22</td>
<td>1.85</td>
<td>3.69</td>
</tr>
<tr>
<td>A3</td>
<td>18.38</td>
<td>66.07</td>
<td>3.66</td>
<td>11.89</td>
</tr>
<tr>
<td>A4</td>
<td>47.29</td>
<td>46.85</td>
<td>2.86</td>
<td>3.00</td>
</tr>
<tr>
<td>A5</td>
<td>5.86</td>
<td>88.89</td>
<td>5.26</td>
<td>0.00</td>
</tr>
<tr>
<td>A6</td>
<td>6.96</td>
<td>17.61</td>
<td>16.62</td>
<td>58.81</td>
</tr>
<tr>
<td>A8</td>
<td>30.26</td>
<td>29.58</td>
<td>25.92</td>
<td>14.23</td>
</tr>
<tr>
<td>A9</td>
<td>16.67</td>
<td>41.87</td>
<td>29.12</td>
<td>12.34</td>
</tr>
</tbody>
</table>

Tabla 3. Porcentaje de alaclor liberado después de 3, 6, 24, 48, 72, 96, 120 y 168 horas de ensayo de disolución.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>3</th>
<th>6</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.14</td>
<td>1.63</td>
<td>3.53</td>
<td>4.14</td>
<td>5.02</td>
<td>5.84</td>
<td>6.39</td>
<td>7.02</td>
</tr>
<tr>
<td>A2</td>
<td>1.66</td>
<td>2.59</td>
<td>3.83</td>
<td>5.12</td>
<td>6.26</td>
<td>7.40</td>
<td>8.07</td>
<td>8.55</td>
</tr>
<tr>
<td>A3</td>
<td>0.56</td>
<td>1.40</td>
<td>2.70</td>
<td>4.00</td>
<td>4.78</td>
<td>5.42</td>
<td>5.82</td>
<td>7.22</td>
</tr>
<tr>
<td>A4</td>
<td>0.56</td>
<td>2.09</td>
<td>5.82</td>
<td>8.12</td>
<td>9.68</td>
<td>11.89</td>
<td>12.98</td>
<td>14.75</td>
</tr>
<tr>
<td>A5</td>
<td>0</td>
<td>0</td>
<td>2.19</td>
<td>3.26</td>
<td>4.49</td>
<td>5.60</td>
<td>6.30</td>
<td>6.68</td>
</tr>
<tr>
<td>A6</td>
<td>6.83</td>
<td>7.83</td>
<td>17.78</td>
<td>27.27</td>
<td>31.28</td>
<td>32.92</td>
<td>39.25</td>
<td>44.27</td>
</tr>
<tr>
<td>A7</td>
<td>6.97</td>
<td>8.81</td>
<td>21.61</td>
<td>30.87</td>
<td>38.65</td>
<td>42.05</td>
<td>44.92</td>
<td>51.42</td>
</tr>
<tr>
<td>A8</td>
<td>9.36</td>
<td>13.31</td>
<td>30.58</td>
<td>39.89</td>
<td>47.51</td>
<td>52.92</td>
<td>57.26</td>
<td>63.16</td>
</tr>
<tr>
<td>A9</td>
<td>9.84</td>
<td>23.46</td>
<td>42.54</td>
<td>59.07</td>
<td>72.83</td>
<td>77.42</td>
<td>82.68</td>
<td>88.16</td>
</tr>
<tr>
<td>Alaclor</td>
<td>22.90</td>
<td>32.65</td>
<td>87.07</td>
<td>90.75</td>
<td>92.31</td>
<td>91.84</td>
<td>91.81</td>
<td>91.62</td>
</tr>
</tbody>
</table>

Resultados y Discusión
Cuando se ha utilizado bajo porcentaje de PVA (0.075%), el comportamiento en ambas relaciones A/EC es muy parecido. Las microesferas A1, con relación herbicida/polímero 1/10 liberan un 7% de alaclor (Tabla 3) y las microesferas A2, relación A/EC 1/5, liberan un 8.5% (Figura 1), a pesar de que la carga del plaguicida (CP) se multiplica casi por 3 en las microesferas A2 respecto a las A1.

Al aumentar el porcentaje de tensioactivo (0.15%), en las microesferas A4, relación 1/5, se ha conseguido un perfil de liberación ligeramente superior (14.75%) que en las microesferas A3 con relación 1/10 (7.2%) (Tabla 3), (Figura 2).

En las imágenes de microscopía electrónica de barrido correspondientes a las microesferas A1, (Figura 3) se observan partículas muy pequeñas, algunas son irregulares y otras esféricas (Figura 3b). La superficie es lisa, sin apenas poros (Figura 3a). Tampoco se observan cristales correspondientes al herbicida en la superficie de las microesferas y ello se corroboró tras un estudio por energía dispersiva de rayos X, realizado al mismo tiempo que el estudio por microscopía electrónica de barrido.

Como puede verse en las imágenes obtenidas por el microscopio de barrido electrónico de las microesferas A2 (Figura 4a), éstas presentan también una superficie lisa, con pocos poros, lo cual podría ser la razón de que se disuelva un bajo porcentaje (8.55%) de alaclor (Tabla 3).

Figura 1. Influencia de la relación alaclor/etilcelulosa con bajo porcentaje de tensioactivo (0.075%), en la liberación in vitro de alaclor.
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Figura 2. Influencia de la relación alaclor/etilcelulosa con alto porcentaje de tensioactivo (0.15%), en la liberación in vitro de alaclor.

Figura 3. Microesferas A1. Fracción <100 nm. a) x 50; b) x 1000.

Figura 4. Microesferas A2. Fracción 200-400 µm. a) x 50; b) x 1000.

Resultados y Discusión
En la figura 5, correspondiente a la imagen obtenida por microscopía electrónica de barrido de la fracción 200-400 μm de las microesferas A3, se observa que son poco porosas (figura 5a), lo cual concuerda con el bajo porcentaje de alaclor liberado en el ensayo de disolución. Se trata de partículas esféricas, de superficie no rugosa en la que no se observan cristales correspondientes al herbicida, según el estudio de energía dispersiva de rayos X.

Figura 5. Microesferas A3. Fracción 200-400 μm. a) x 1000; b) x 50.

4.1.2.- Influencia del contenido en PVA

Se comparan las microesferas A1 con A3 y las microesferas A2, A4 y A9. Las microesferas A1 y A3 tienen una relación plaguicida/polímero 1/10, las primeras se han elaborado con 0.075% de PVA y las segundas con 0.15%. (Tabla 1). Los porcentajes de rendimiento de producción (RP), carga de alaclor (CP) y de eficacia de encapsulación (EE) son mayores cuando se utiliza menor cantidad de tensioactivo, aunque en general no hay mucha diferencia.

En las microesferas A1 (Tabla 2) se observa mayor número de partículas en la fracción de tamaño comprendido entre 200 y 400 μm, seguida de las de diámetro inferior a 100 μm. La que presenta menor porcentaje de microesferas es la de tamaño mayor a 400 μm. También resulta ser más numerosa la fracción comprendida entre 200 y 400 μm para las microesferas A3, la segunda fracción más numerosa es la de tamaño superior a 400 μm, le sigue la de tamaño de partícula menor de 100 μm y finalmente, la menos numerosa es la fracción de diámetro comprendido entre 100 y 200 μm. Aunque
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilecelulosa

tanto en las microesferas A1 como en las A3 sus tamaños de partícula están distribuidas entre las distintas fracciones estudiadas, en el caso de las A3 hay un mayor porcentaje en las fracciones superiores a 200 μm (84.45%) que en el caso de las microesferas A1 (62.39%).

En estas microesferas, A1 y A3, prácticamente no hay diferencia en la liberación de alaclor, que resulta ser bajo (7%) (Tabla 3), cuando se pasa de un 0.075% a un 0.15% de alcohol polivinílico (Figura 6).

![Figura 6. Influencia de la cantidad de alcohol polivinílico (PVA) cuando la relación A/EC es 1/10 en la liberación in vitro de alaclor.](image)

Las microesferas A2, A4 y A9 tienen una relación alaclor/EC 1/5. A2 se ha realizado con 0.075% de PVA, A4 con 0.15% y A9 con 0.04%.

Cabe esperar que la disminución en el porcentaje de alcohol polivinílico conduzca a un aumento de la eficacia de encapsulación, rendimiento de producción y carga de pesticida, al igual que ha ocurrido con las microesferas A1 y A3. Pérez Martínez y col., (2001) lo observaron también, cuando elaboraron microesferas con el herbicida norflurazona y unos porcentajes de PVA del 0.07 y 0.136%. Esto se cumple cuando se comparan las microesferas elaboradas con 0.15% y 0.075% de PVA (Tabla 1). Sin embargo, este comportamiento no se produce cuando se pasa del 0.075% al 0.04% de tensioactivo.

Resultados y Discusión
Estudio de la liberación controlada del herbicida aclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

En las microesferas A2 y A4 predominan aquellas partículas cuyo tamaño es superior a 200 µm (Tabla 2), siendo el porcentaje de partículas superior al 94% en ambos casos. En las microesferas A2, el porcentaje de partículas comprendidas entre 200 y 400 µm es ligeramente superior al de partículas de diámetro mayor de 400 µm. En las microesferas A4 los porcentajes en estas dos mismas fracciones son prácticamente iguales. Para las microesferas A9 la fracción de tamaño de partícula más abundante es la comprendida entre 200 y 400 µm, seguida de la de 100-200 µm, siendo sólo de un 58.5% la cantidad de microesferas superiores a 200 µm. Esta dispersión en los tamaños de partículas obtenidos no conviene, pues se debe intentar conseguir tamaños lo más homogéneos posible.

Las microesferas A4 presentan una liberación del herbicida que prácticamente es el doble que en las A2 (14.75% frente a 8.55%) (Figura 7). Cuando disminuye el porcentaje de tensioactivo hasta 0.04%, microesferas A9, se incrementa la liberación del herbicida (88.2%) hasta valores similares a los que se alcanzan cuando se realiza el ensayo de disolución con aclor puro (91.6%) (Tabla 3).

![Figura 7. Influencia de la cantidad de alcohol polivinílico (PVA) cuando la relación A/EC es 1/5, en la liberación in vitro de aclor.](image-url)
Las microesferas A4 (Figura 8) presentan una superficie más porosa que las microesferas A2 (Figura 4), lo que explica que las microesferas A4 liberen aproximadamente el doble de herbicida que las microesferas A2 (Figura 7), a pesar de su menor contenido de herbicida (CP) (12.98% en A4 frente a 17.12% en A2) (Tabla 1).

4.1.3.- Influencia de la adición de polietilenglicol 4000

El polietilenglicol (PEG₄₀₀₀) es un polímero hidrofilico que se utiliza como agente formador de canales en las microesferas, lo cual favorece la liberación del herbicida.

Son comparables las microesferas A4, sin PEG, microesferas A7 con 20% de PEG y microesferas A8 con 40% de PEG (Tabla 1).

Para los tres tipos de microesferas se obtiene un rendimiento de producción similar, entorno al 77% (Tabla 1). A medida que aumenta el contenido en PEG, aumenta levemente la carga de plaguicida (CP) y más notablemente la eficacia de encapsulación (EE).

Respecto a la distribución de tamaños, en las microesferas A4, como se ha comentado en el apartado anterior, predominan las partículas de diámetro mayor a 200 μm. Para las microesferas A7, con un 20% de PEG, se alcanzan porcentajes similares en todas las fracciones de tamaño de partícula. (Tabla 2). Las microesferas que se han realizado con un 40% de PEG (A8) presentan un 30% del total de partículas de diámetro...
mayor a 400 μm y un 29% comprendido entre 200-400 μm. El menor porcentaje se encuentra en la fracción de tamaño inferior a 100 μm.

Es significativo, el incremento que se produce en la liberación de alaclor, cuando se incorpora PEG en la preparación de las microesferas. Cuando la proporción de PEG es del 40% respecto a la EC40 se libera el 63% de alaclor y en el caso de 20% de PEG, se libera un 51% del herbicida (Tabla 3) (Figura 9). Se puede explicar porque el PEG es un polímero hidrofilico y abandona las microesferas durante el proceso de formación de las mismas, formando canales, lo cual aumenta la porosidad de las mismas. (Fernández-Urrusuno y col., 2000). Otro factor que influye en la mayor velocidad de disolución de las microesferas A7 y A8 es la más alta acumulación de partículas de menores tamaños en comparación con las microesferas A4 (Tabla 2).

![Figura 9. Influencia de la adición de distintas cantidades de polietilenglicol 4000 (PEG₄₀₀₀), en la liberación in vitro de alaclor.](image)

4.1.4.- Influencia de la velocidad de agitación

Se han comparado las microesferas A4, para las que se ha utilizado una velocidad de agitación de 600 rpm, con las microesferas A5, formadas a 300 rpm y con A6 a 900 rpm.
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Cuando la velocidad de agitación utilizada en la formación de microesferas es baja (300 rpm), se obtienen los mayores valores de eficacia de encapsulación (69.8%) y de rendimiento de producción (80.4%) (Tabla 1). Sin embargo, la mayor carga de alaclor (14.98%) se consigue cuando se utiliza la agitación más veloz (900 rpm).

También se consigue una distribución de tamaño más homogénea con la velocidad de agitación de 300 rpm, predominando la fracción comprendida entre 200 y 400 μm (89%) y no se producen partículas de diámetro inferior a 100 μm (Tabla 2).

En el caso de emplear una velocidad de agitación de 900 rpm, la fracción de tamaño mayoritaria (59%) es la de diámetro inferior a 100 μm. La velocidad de agitación influye en el tamaño de las microesferas. A mayor velocidad de agitación, menor tamaño de partícula y mayor velocidad de disolución (Figura 10). El porcentaje de alaclor liberado en el ensayo de disolución alcanza valores del 44%, frente al 15% en el caso de 600 rpm y 7% cuando se agita a 300 rpm (Tabla 3).

![Figura 10. Influencia de la velocidad de agitación, en la liberación in vitro de alaclor.](image)

Resultados y Discusión

Como puede apreciarse en las imágenes obtenidas por el microscopio de barrido electrónico, las microesferas elaboradas a 300 rpm presentan una superficie lisa y sin poros (Figura 11a). Las microesferas realizadas a 900 rpm muestran un número elevado
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa
de poros y de gran tamaño (Figura 12a), lo que junto con sus menores tamaños de partícula, conlleva a una liberación más rápida en agua (Figura 10). En la imagen correspondiente a un aumento de 1000 (Figura 12 b), se observan microesferas y partículas alargadas e irregulares. Cuando se estudia mediante energía dispersiva de rayos X, se encuentra cloro sobre la superficie de algunas partículas irregulares, lo cual es indicativo de la presencia de alaclor.

Figura 11. Microesferas A5. Fracción 200-400 μm. a) x 1000; b) x 50

Figura 12. Microesferas A6. Fracción <100 μm. a) x 1000; b) x 50.

De los estudios de liberación de alaclor in vitro, se ha evaluado la cinética de liberación del herbicida según la fórmula:

\[
\frac{M_t}{M_z} = k t^n
\]

Resultados y Discusión
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

\[\frac{M_t}{M_z} \] es el porcentaje de alaclor liberado en el tiempo \(t \). \(k \) y \(n \) son constantes. Los valores calculados de \(k \) y \(n \) se recogen en la tabla 4. La constante \(n \) indica el mecanismo de liberación. Para \(n \) hemos obtenido unos valores comprendidos entre 0.41 y 0.71. Según Ritger y Peppas, valores de \(n \) próximos a 0.5 indican que la liberación se produce por mecanismo de difusión controlada. Estas constantes permiten calcular el tiempo al cual se libera el 50% del alaclor (\(t_{50} \)). El valor mayor de \(t_{50} \) corresponde a las microesferas A2, de relación A/EC 1/5, 0.075% de PVA, realizadas a 600 rpm y sin la adición de PEG.

El perfil de liberación que mostraron las microesferas A5 no se ajustaba a una ecuación potencial, por lo cual no se han podido calcular los valores de las constantes \(k \) y \(n \). Así mismo tampoco se ha podido hallar el valor de \(t_{50} \).

Tabla 4. Constantes que cumplen la ecuación de cinética de liberación para las microesferas realizadas, en el ensayo de disolución de alaclor in vitro.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>(k)</th>
<th>(n)</th>
<th>(R^2)</th>
<th>(t_{50}) (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.6929</td>
<td>0.4687</td>
<td>0.9889</td>
<td>9221.36</td>
</tr>
<tr>
<td>A2</td>
<td>1.0965</td>
<td>0.4172</td>
<td>0.9869</td>
<td>9471.47</td>
</tr>
<tr>
<td>A3</td>
<td>0.4113</td>
<td>0.577</td>
<td>0.9708</td>
<td>4103.84</td>
</tr>
<tr>
<td>A4</td>
<td>0.4905</td>
<td>0.7124</td>
<td>0.9281</td>
<td>659.33</td>
</tr>
<tr>
<td>A5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A6</td>
<td>3.6005</td>
<td>0.4995</td>
<td>0.9874</td>
<td>193.87</td>
</tr>
<tr>
<td>A7</td>
<td>3.8449</td>
<td>0.5356</td>
<td>0.9817</td>
<td>120.25</td>
</tr>
<tr>
<td>A8</td>
<td>5.8763</td>
<td>0.489</td>
<td>0.9837</td>
<td>79.72</td>
</tr>
<tr>
<td>A9</td>
<td>8.69161</td>
<td>0.487</td>
<td>0.9806</td>
<td>36.33</td>
</tr>
</tbody>
</table>

Resultados y Discusión
4.2.- CARACTERIZACIÓN FÍSICO-QUÍMICA DEL SUELO

Se ha caracterizado el suelo CR, cuyas propiedades físico-químicas se muestran en la siguiente tabla.

Tabla 5. Características del suelo CR.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>6.9</td>
</tr>
<tr>
<td>CCC (cmol kg⁻¹)</td>
<td>4.8</td>
</tr>
<tr>
<td>MO (%)</td>
<td>0.79</td>
</tr>
<tr>
<td>Arena (%)</td>
<td>87.6</td>
</tr>
<tr>
<td>Limo (%)</td>
<td>4</td>
</tr>
<tr>
<td>Arcilla (%)</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Se trata de un suelo básico, lo cual coincide con la presencia de carbonatos. También cabe destacar el elevado contenido en fracción arena.

Tabla 6. Elementos mayoritarios del suelo CR (%).

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>5.32</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.14</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>0.41</td>
</tr>
<tr>
<td>CaO</td>
<td>2.98</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.58</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Resultados y Discusión
Estudio de la liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Tabla 7. Elementos minoritarios del suelo CR (mg kg⁻¹)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Concentración (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>7.0</td>
</tr>
<tr>
<td>Zn</td>
<td>20.2</td>
</tr>
<tr>
<td>Cu</td>
<td>13.0</td>
</tr>
<tr>
<td>Co</td>
<td>6.6</td>
</tr>
<tr>
<td>Pb</td>
<td>35.2</td>
</tr>
<tr>
<td>Cr</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Tabla 8. Óxidos amorfos de Fe, Mn y Al correspondientes al suelo CR (g kg⁻¹).

<table>
<thead>
<tr>
<th>Óxido</th>
<th>Concentración (g kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>0.36</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.25</td>
</tr>
</tbody>
</table>

4.3.- ESTUDIOS DE MOVILIDAD EN COLUMNAS DE SUELO

La movilidad de un herbicida puede depender de múltiples factores, como son la cantidad de agua a la que la zona de cultivo se encuentre sometida, al estado de la superficie del suelo y las características del mismo, la cantidad de agua que posea el mismo e incluso la temperatura del medio.

Este tipo de experimentos son de una gran relevancia, ya que se encuentran directamente relacionados con el impacto ambiental que estos compuestos pueden provocar, los cuales pueden llegar a contaminar las aguas subterráneas si por sus características poseen un alto potencial para ser lixiviados.
Los resultados obtenidos se han representado en forma de curvas de elución, donde en el eje de abscisas se representa el número de volúmenes de poro y en el de ordenadas, la concentración relativa de aliclor eluido en la columna, respecto a la inicialmente añadida (C/Co). El volumen de poro determinado para el suelo CR fue 57.45 mL.

A pesar de tratarse de un suelo arenoso, sólo se eluye un 54.73% del aliclor aplicado directamente en solución a la columna. El máximo de elución aparece a 3.5 volúmenes de poro (Figura 13).

Weber y col., (1993), en el estudio de la movilidad de fomesafen y atrazina en columnas de suelo, llegaron a la conclusión de que la movilidad de fomesafen estaba inversamente relacionada con el contenido de materia orgánica y de materia húmica. También señalan que existe una relación inversa entre la movilidad de atrazina y la materia orgánica del suelo. Por esta razón, en el suelo CR, que contiene un 0.79% de materia orgánica (Tabla 5), cabría esperar una elevada movilidad de aliclor.
Para el estudio de movilidad en columnas de suelo se seleccionaron las microesferas A5, con un bajo porcentaje de liberación de alaclor, ya que se realizaron a 300 rpm y apenas presentaban poros en superficie. También se eligieron las microesferas A7, que se elaboraron con un 20% de PEG, agente formador de canales, y con las que se conseguían perfiles de liberación de alaclor de hasta un 51 %.

Prácticamente no hay elución de alaclor cuando se aplica como microesferas realizadas a 300 rpm. Como se observa en la figura 15 sólo se eluye el 3.7% del alaclor aplicado formando parte de las microesferas A5. No se observa el máximo de elución, probablemente porque se retrasa la liberación del herbicida respecto al alaclor puro.
Figura 16. Curva de elución acumulativa de alaclor aplicado como microesferas A5.

Cuando se hace el estudio de elución, en columnas de suelo CR, del herbicida alaclor incluido en forma de microesferas A7, el máximo de elución se alcanza a un volumen de poro de 4.8 (figura 17), se retrasa respecto al máximo de elución cuando el herbicida se aplica puro en forma de solución al suelo (3.5) (figura 13). El porcentaje de herbicida eluido resulta ser un 17.92%.

Figura 17. Curva de elución de alaclor aplicado como microesferas A7
Estudio de la liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Figura 18. Curva de elución acumulativa de alaclor aplicado como microesferas A7.

Al comparar conjuntamente las distintas curvas de elución de alaclor obtenidas (figura 19), se pueden realizar las siguientes observaciones:

Cuando se aplica el herbicida alaclor al suelo CR empaquetado en columna, se alcanza un valor C/Co máximo de 0.09. Se tomaron un total de 27 muestras, aunque se observa que a partir de la muestra 21 (aproximadamente 10 volúmenes de poro) no se produce elución del alaclor.

En el caso de aplicar el herbicida encapsulado en microesferas (A7), se consiguen valores máximos de elución de C/Co de 0.014. Tras tomar 27 muestras y analizarlas, se puede ver que sigue eluyendo alaclor, con lo cual se retrasa la elución del herbicida y se mantiene la liberación del mismo en valores bajos.

Con la adición de alaclor como microesferas A5 prácticamente no hay elución del herbicida.

En las columnas en las que se ha aplicado el herbicida alaclor incluido en microesferas se han producido menores eluciones del herbicida, en comparación con aquellas en las que el alaclor se añadió puro en solución, por lo que se concluye que la incorporación de alaclor en las microesferas disminuye su liberación en suelos.
Figura 19. Gráfica comparativa de las curvas de elución de alaclor aplicado puro en solución, como microesferas A5 y como microesferas A7.

El Nahhal, (2003), ha observado que cuando se elaboran sistemas de liberación controlada de alaclor, utilizando minerales de la arcilla, en los que se adsorben moléculas del herbicida, se restringe la liberación del mismo en agua y esto hace disminuir su movilidad en suelo, lo cual hace esperar un tiempo de control de las malas hierbas a nivel del suelo más prolongado.
CONCLUSIONES
5.- CONCLUSIONES

1.- De las microesferas elaboradas con distinta proporción herbicida/EC, aquellas cuya relación alaclor/EC es 1/5, presentan mayor porcentaje de eficacia de encapsulación. Con esta relación también se consigue mejor rendimiento de producción en caso de alto porcentaje de tensioactivo PVA (0.15%). Además estas microesferas (A4), en el grupo de microesferas comparables, son las que tienen mejor perfil de liberación (14.75% frente a 7.22%).

2.- Cuando se comparan distintas microesferas para determinar la influencia del porcentaje de tensioactivo (PVA), se observa que el menor porcentaje de PVA (0.04%) proporciona mayor rendimiento de producción (79.11%), pero también la liberación de alaclor más elevada (88%), próxima a la disolución de alaclor puro. La mayor eficacia de encapsulación se logra con un valor intermedio de contenido en PVA (0.075%). Cuando la relación A/EC es 1/10 no se observan cambios en la liberación (7%) cuando se pasa del 0.075% al 0.15% de PVA. En caso de relación A/EC 1/5 la liberación del herbicida pasa de 8.55 % en caso de utilizar un 0.075% de PVA a un 14.75% cuando el porcentaje de PVA se duplica (0.15%).

3.- El uso de PEG4000 en la elaboración de microesferas influye significativamente en los perfiles de liberación de alaclor. Al comparar microesferas en las que se mantenían constantes todas las variables, excepto el contenido en PEG4000, se consiguen valores de disolución de alaclor de hasta el 63.16% en el caso de utilizar un 40% de PEG4000. A su vez, con este porcentaje de PEG4000 se obtiene mayor eficacia de encapsulación. (69.51%).

Cuando se emplea un 20% de PEG4000 se libera un 51.42% del herbicida y cuando no se utiliza PEG4000 la liberación de alaclor es menor (14.75%). Parece ser que el contenido en PEG4000 no influye en el rendimiento de producción, ya que en los tres casos se obtienen valores de RP similares (77%). Lo mismo se puede decir de la carga de plaguicida, entre 13 y 14 %.

Conclusiones
4.- La elaboración de microesferas a baja velocidad de agitación (300 rpm), manteniendo fijas las demás variables, proporciona microesferas de mayor diámetro y una distribución de tamaño más homogénea (200-400 μm). Las microesferas prácticamente no presentan poros. Con esta velocidad también se consiguen mayores porcentajes de rendimiento de producción (80.4%) y de eficacia de encapsulación (69.8%). Sin embargo, la mayor carga de plaguicida (14.98%) se alcanza con la velocidad de agitación más alta (900 rpm) y la mayor velocidad de liberación (44.27%) también se consigue con estas microesferas. El mayor porcentaje de microesferas presenta un tamaño inferior a 100 μm.

5.- El suelo empleado en el presente trabajo (CR) ha presentado un pH básico igual a 8, lo cual concuerda con el contenido en carbonatos (6.9%). El valor de materia orgánica obtenido ha resultado ser bajo (0.79%). El suelo CR presenta una baja proporción de fracción arcilla (8.4%). Se trata de un suelo fundamentalmente arenoso y como cabe esperar el contenido en SiO₂ es elevado (82.7%). Se clasifica como Typic Xeropsamment.

6.- En los estudios de movilidad de a laclor en columnas de suelo (CR), cuando se aplica el herbicida puro en solución, se consigue una elución del 54.73%, inferior a la esperada al tratarse de un suelo arenoso, con bajo contenido en materia orgánica y fracción arcilla.

7.- Cuando la aplicación de a laclor se realiza en forma de microesferas, se retrasa el máximo de elución, las cantidades eluidas son bastante más bajas que los conseguidas con el herbicida puro en solución y la elución se mantiene durante un tiempo más prolongado.

Conclusiones
BIBLIOGRAFÍA
6.- BIBLIOGRAFÍA

Estudio de liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Bibliografía
Estudio de liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

EL-NAHHAL, Y. “Persistence, mobility, efficacy and activity of chloroacetanilide herbicide formulation under greenhouse and field experiments”. Environmental Pollution, 124, (2003), 33-38.

Bibliografía
Estudio de liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de estielcelulosa

Eswdio de liberación controlada del herbicida alachlor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Estudio de liberación controlada del herbicida alcalor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Bibliografía
Estudio de liberación controlada del herbicida alaclor en suelo y agua mediante la elaboración de microesferas de etilcelulosa

Bibliografía

